REPORT No. 528 # REDUCTION OF HINGE MOMENTS OF AIRPLANE CONTROL SURFACES BY TABS By Thomas A. Harris #### SUMMARY An investigation was conducted in the N. A. C. A. 7- by 10-foot wind tunnel of control surfaces equipped with tabs for reducing the control forces or trimming the aircraft. Two sizes of ordinary ailerons with several sizes of attached and inset tabs were tested on a Clark Y wing. Tabs were also tested in combination with auxiliary balances of the horn and paddle types, and with a Frise balanced aileron. A tail-surface model of symmetrical section, equipped with tabs, was tested with 40 percent of the area movable (elevator) when used as a horizontal tail and 60 percent of the area movable (rudder) when used as a vertical tail. The half-span tail-surface model was tested with and without a reflection plane. Complete detailed results of the tests are tabulated in standard nondimensional coefficient form. The aileron test data are discussed for one aileron movement and graphs of control force against rolling-moment coefficient are included. Curves showing the effect of the tabs as trimming or as servo-control devices are given. For the tail surfaces, the effectiveness of tabs in reducing the control force and in trimming and servo operation is discussed and figures are included. The effect of angular velocities on the application of the data to complete airplanes is considered and also the effect of the difference in the wind-tunnel test set-up from the actual arrangement on an airplane. The results of the tests indicated that inset tabs were superior to attached tabs for the same ratio of tab/control-surface deflection. The greatest reduction in control force occurred at 0° angle of attack. The tabs could be used satisfactorily as trimming devices and also to reduce the control force for control moments as large as those ordinarily obtained by deflecting the control surface 15° or less. The reduction of hinge moments due to tabs could be added directly to the reduction due to paddle, horn, or Frise types of balance. Angles of yaw up to 20° had no appreciable effect on the reduction of hinge moments due to tabs. # INTRODUCTION For large airplanes, designers have found it necessary to provide some means of balancing the excessive aerodynamic forces on the control surfaces. Aerodynamic methods of balance such as horns, paddles, and inset-hinge arrangements have been used to a considerable extent. A mechanical device is not desirable because the hinge moment varies with the speed of the airplane; whereas balancing force is independent of speed. In recent designs, auxiliary airfoils attached to the control surfaces have been used for balance and also for trimming the airplane. This type of aerodynamic balance is a development of the "Flettner rudder," which has been in use for a number of years on large vessels. Such an auxiliary airfoil has been referred to in this paper as a "tab" and may be inset, attached, or mounted on outriggers from the trailing edge of the control surface. The tabs, when linked, move in the opposite direction to that of the control surface and thereby decrease the hinge moment for a given deflection of the control surface. Various arrangements of inset tabs are shown in figure 1. When the tab is used to actuate the control surface, it is referred to as a "servo-control tab." In reference 1 the theoretical expressions for the hinge moment about any hinge position have been deduced for flaps on a rectangular airfoil of finite span and applied to an airfoil fitted with a servo-operated flap. The theoretical discussion by Kirste (reference 2) also includes complete tests of a symmetrical rectangular airfoil with a flap and a tab. The results of wind-tunnel tests of a tab attached to the aileron are reported in reference 3. Calculations based on airfoil theory have been made, in references 4 and 5, for the tab deflections required to hold the rudder over for different combinations of tab and rudder settings. The results of these calculations were checked by wind-tunnel tests (reference 6) as well as in flight (reference 7). A more recent series of tests (reference 8) covers several attached-tab arrangements on a symmetrical rectangular wing with a flap. These tests were made with both ordinary and balanced flaps. The data presented in the present report are the result of a systematic series of wind-tunnel tests of a commonly used wing profile with several arrangements of ailerons and tabs, alone and in conjunction with other types of balance. The tests were also extended to include a tail surface of assumed average proportions with several different tabs. Although the tests do not include all possible tab arrangements, it is hoped that the data are sufficiently general to fulfill most design requirements. # MODELS AND APPARATUS WING-AILERON ARRANGEMENTS The models used for the aileron balance tests were rectangular 10- by 60-inch laminated mahogany wings FIGURE 1.—Diagram showing various tab linkage systems. of Clark Y section constructed to the specified ordinates with a precision of ± 0.005 inch. The right-hand wing tip of each wing model was equipped with a conventional aileron to which the various tabs were fitted. Two sizes of ailerons were tested, one being of 40 percent wing chord by 30 percent wing semispan and referred to as the "short wide aileron"; the other being of 25 percent wing chord by 40 percent wing semispan called the "medium-size aileron." Each aileron was mounted on a different wing. Attached tabs.—The short wide aileron with attached tabs is shown in figure 2. In the following table the various attached tab arrangements are listed: | Ī | Tab chord | Tab span | Span designation | |---|--------------------------|---|--| | | Percent c ₁ 5 | Percent b _A 100 100 100 50 50 50 100 | Full-span. Outboard Center Half-span. Inboard Full-span. | Where c_A is the chord and b_A the span of the alleron. "Outboard" refers to outboard end of tab flush with outboard end of aileron, "center" refers to tab symmetrically located with respect to aileron span, and "inboard" refers to inboard end of tab flush with inboard end of aileron. The attached tabs were constructed of ½2-inch flat steel and were screwed to a brass trailing-edge piece of the aileron so that when neutral the lower surface of the tab was flush with the lower surface of the aileron. The angle of the tab was adjusted by bending about the trailing edge of the aileron and all openings between tab and aileron were sealed with plasticine. Inset tabs.—The short wide aileron is shown equipped with inset tabs in figure 3. In the following table the various inset tab arrangements are listed: | Tab chord | Tab span | Span designation | |---------------|--------------------------------|---| | Percent c , 5 | Percent b 100 100 100 50 50 50 | Full-span. Outboard Center Half-span. Inboard | Outboard, center, and inboard have the same meaning as for the attached tabs. The brass inset tabs were attached to the main part of the aileron by soft wire pins that could be bent to obtain the desired tab deflections. The medium-size aileron (fig. 4) was tested with a tab extending along the entire span of the aileron and with a chord 10 percent of the aileron chord. The aileron was constructed of wood with a brass trailing edge to which the brass tab was secured in a manner similar to that used for the inset tabs on the short wide aileron. For all tests the space between the tab and aileron was sealed with plasticine. Combination balances.—Additional tests were made at the request of the Bureau of Aeronautics, Navy Department, of the short wide aileron and a center inset tab 20 percent of the aileron chord wide and half of the aileron span long in combination with two sizes of paddles. The paddles were 18.75 and 27.5 percent of the aileron chord wide and 44.5 percent of the aileron span long and were located symmetrically with respect to the aileron span (fig. 5). The duralu- FIGURE 2.—Diagram of wing showing attached tabs on short wide alleron. Note.—x=chord length of tab=5, 10, 20, and 30 percent of c_A . Span of tab=100 and 50 percent of b_A . FIGURE 3.—Diagram of wing showing inset tabs on short wide alleron. Note.— z=chord length of tab=5, 10, and 20 percent of c_A . Span of tab=50 and 100 percent of b_A . FIGURE 4.—Diagram of wing showing inset tab on medium-size afteron. FIGURE 5.—Diagram of wing showing center inset tab and paddle balance on short wide alleron. Note.—x=chord length of paddle balance=18.75 and 27.5 percent c_A . FIGURE 6.—Diagram of wing showing center inset tab and horn balance on short wide afteron. FIGURE 7.—Diagram of wing showing center inset tab on Frise alleron. FIGURE 3.—Diagram of tail surface showing details. Note.—For elevator x=5, 10, and 20 percent c_B . For rudder z=20 percent c_B . min paddles had the N. A. C. A. 0012 profile and were supported in the positions specified with \(\chi_2\)-inch sheet steel end brackets. On this same aileron a horn was attached for additional tests. The aileron was faired to a symmetrical section in the horn, the principal dimensions of which are shown in figure 6. The plan of the horn was made to conform to the shape suggested by the Bureau of Aeronautics, Navy Department, the leading-edge portion being half of an ellipse. The horn was constructed of laminated mahogany and was fair to the same precision as the remainder of the model. The short wide aileron was also tested with a modified Frise type of balance and a tab (fig. 7). The nose shape of the aileron was obtained from a study of available Frise aileron data and was made similar to the Frise aileron of reference 9 with a raised nose. This type of Frise balance gives slightly less balance for low deflections, where overbalance usually occurs, but
gives about the same balance as the ordinary Frise aileron at the high deflections. The mahogany nosepiece was attached to the leading edge of the ordinary aileron by screws and a suitable cut-out was made in the wing to provide clearance. (See fig. 7.) TAIL-SURFACE ARRANGEMENTS The tail-surface model used in these tests is shown in figure 8. The model of laminated mahogany had an N. A. C. A. 0006 profile faired to about a 1/2-inch radius at the tip and was constructed to a precision of ± 0.005 inch. The plan form of the model was designed to be an average of either a half-span horizontal or a full-span vertical tail. The span of the model was 30 inches and the average chord 20 inches, giving an aspect ratio of 1.5. As a horizontal tail, a portion of the model was hinged along the elevator axis shown in the figure. This arrangement gave an elevator area 40 percent of the total tail area. The inset tabs of different chord lengths were made with a span equal to the span of the straight trailing-edge portion of the elevator. The tab chords tested were 5, 10, and 20 percent of the maximum elevator chord. The tabs were made from the trailing-edge portion of the elevator and were secured to the main part of the elevator by soft wire pins that could be bent to give the desired tab deflections. As a vertical tail, 60 percent of the area of the model was hinged along the rudder axis as shown in figure 8. Only one tab was used; it had the same span as the elevator tab and a chord 20 percent of the maximum rudder chord. In all cases the gap between the tab and the tail surface was sealed with plasticine. ### WIND TUNNEL AND BALANCES The N. A. C. A. 7- by 10-foot wind tunnel in which these tests were made has an open jet and a closed return passage. The tunnel and regular six- component balance are described in detail in reference 10. On this balance the six components of aerodynamic forces and moments are independently and simultaneously measured with respect to the wind axes of the model. In order to measure the hinge moments simultaneously with the other forces and moments a special hinge-moment balance of the pressure-cell type was used. A diagrammatic drawing of this balance is shown in figure 9. The balance consists of a simple beam supported on an axle in plain bearings and attached to a rubber diaphragm. The space under the diaphragm is connected in parallel with a U-tube and a controllable air-pressure supply. The beam moves between electrical contacts coupled to neon lamps. The beam is balanced by adjusting the air pressure until neither lamp is lighted or until they blink alternately. The pressure is then read on the U-tube, which has been previously calibrated in terms of hinge moments. A spring is incorporated for adjusting the zero reading of the balance and a dashpot is used to damp vibrations. The balance was entirely enclosed in the wing and so mounted that the aileron and balance axes coincided, the aileron being attached directly FIGURE 9.-Diagram of hinge-moment balance. to the balance axle. The leads to the contacts and the pressure tube and also a tube for obtaining the static pressure in the balance recess were brought out through the center of the wing and down the model support to the indicator panel. The static-pressure tube was connected to the static side of the U-tube. A vibrator was mounted on the balance frame to overcome static friction in the system. In order to use the regular six-component balance for measuring the hinge moments on the tail surfaces, the movable part of the tail was so mounted on the regular model support that the hinge axis was coincident with the lateral axis of the balance. The fixed part of the tail was pivoted to the movable part along the same axis and was supported in front by an adjustable tube attached directly to the lift-scale platform. The angle of attack of the fixed tail was changed by adjusting the length of this tube; whereas the angle of the movable tail was changed by use of the regular angle-of-attack mechanism. With this arrangement it was possible to measure the total lift and drag of the model on the lift and drag scales and at the same time to measure the hinge moment of the movable part of the tail on the regular pitching-moment scale. A reflection plane, which was used in conjunction with part of the tail-surface tests, was constructed of %-inch plywood. It extended across the air stream from top to bottom and from a point 7 inches upstream from the leading edge of the model to 4 feet downstream from this point. The gap between the model and the reflection plane was approximately %4-inch. A telltale light was used to indicate any contact of the reflection plane with the model. #### TESTS All tests were made at a dynamic pressure of 16.37 pounds per square foot, corresponding to an air velocity of 80 miles per hour at standard sea-level atmospheric conditions. Thus, for the wing-aileron tests the average Reynolds Number was 609,000 and for the tail-surface tests it was 1,218,000. Wing-aileron arrangements.—Most of the tests of the wing-aileron arrangements were made at 0°, 10°, 15°, and 20° angle of attack and at 0° yaw. For the aileron deflections of 0° , -15° , and -30° , the tab was deflected 0°, 10°, 20°, 30°, and 40°, and for aileron deflections of 0°, 15°, and 30°, the tab was deflected 0°, -10° , -20° , -30° , and -40° . In the alleron tests with the paddles, horn, and Frise types of balance the tab deflections were limited to 0° , $\pm 10^{\circ}$, $\pm 20^{\circ}$, and ±30° because previous tests had shown that the 40° deflections gave less reduction in hinge moment than the 30° deflections. Tests were made on the model with the Frise aileron at both 0° and 20° yaw to determine the effect of yaw on the balance of ailerons with tabs. It is believed that the foregoing range of aileron deflections covers the range used on present-day airplanes. In every case a positive deflection means that the trailing edge of the deflected surface moved below its neutral position. Tail-surface arrangements.—After installation of the reflection plane in the tunnel, dynamic-pressure surveys were made before the tail-surface model was put in place and the reference static pressure was recalibrated for the interference effects. The reflection plane was used in all the tests with the horizontal tail because this arrangement was thought to be more nearly representative of the majority of present-day tail installations. In these tests the stabilizer angles α_s used were -10° , -5° , 0° , 5° , and 10° . For each stabilizer angle the elevator was deflected 0° , -10° , -20° , and -30° from the stabilizer. The 5- and 10-percent-chord tabs were deflected 0°, 10°, 20°, and 30° for each elevator setting and the 20-percent-chord tab was also deflected 40° because it was sometimes more effective at the high deflections. The vertical tail was tested both with and without the reflection plane in place. The tests were made with the fin angles ψ_F of -10° , -5° , 0° , 5° , and 10° . For each fin setting the rudder was deflected 0° , 10° , 20° , and 30° from the fin and for each rudder setting the tab was deflected 0° , -10° , -20° , and -30° from the rudder. A positive deflection is to the left as seen from the rear. #### RESULTS #### WING-AILERON ARRANGEMENTS The results of the tests on the wing-aileron arrangements are given in terms of the following nondimensional coefficients: $$C_L = \frac{\text{lift}}{qS}$$ $C_D = \frac{\text{drag}}{qS}$ $C_{l'} = \frac{\text{rolling moment}}{qbS}$, wind axis $C_{z'} = \frac{\text{yawing moment}}{qbS}$, wind axis $C_{h_1} = \frac{\text{hinge moment}}{qc_A^2b_A}$, aileron axis where q is dynamic pressure. S, area of wing (not including attached tabs, paddles, or horns). b, span of wing (not including horn). c_A, chord of alleron (not including attached tabs, horns, or Frise balance area). b_{A} , span of aileron (not including horn). The values of C_L , C_D , C_1' , and C_n' are read directly on the balances and are comparable for the different arrangements. It should be noted that, with the hingemoment coefficient based on the dimensions of the aileron to which they apply, comparisons of different values of C_{h_1} for different conditions of any given aileron are valid, but comparisons between hinge-moment coefficients for different ailerons cannot be made simply by comparing values of C_{h_1} . If such a comparison is desired, it will be necessary to recalculate the hinge moments on the basis of some common dimension. The complete data are presented in tabular form. In table I, C_L and C_D for all the arrangements are listed. The change in lift and drag caused by the attached tabs was within the experimental accuracy of the tests. The data for the tests with the paddles, horn, and Frise aileron have been corrected for one arrangement on each wing tip. The values of C_l' , C_n' , and C_k , for the attached tabs on the short wide aileron are tabulated as follows: The full-span tabs of different chords in table II and the 20 percent c₄ half-span tab at the several locations along the aileron span in table III. The corresponding data for the inset tab on this aileron are given in tables IV and V. The data for the medium-size aileron with the 10 percent c. full-span inset tab are given in table VI. In table VII the corresponding data are given for the short wide aileron with the 20 percent c_A half-span center inset tab in combination with the paddle, horn, and Frise types of balance. The data for the Frise aileron when yawed 20° are also given in table VII. It should be noted that the rolling- and yawing-moment coefficients with the ailerons
and tabs undeflected are those due to yaw alone; whereas for the tests in which they were deflected the moment coefficients are due to tab or aileron. In order to obtain the results for two ailerons, one on the right tip and one on the left, it is necessary to change the signs of the data for the down aileron and add. (See reference 11.) By use of this convention in summing up the results for two ailerons the signs will be plus when C_{t} is in the desired direction and when C_{n} aids the roll. The value of $C_{h_{1}}$ will be plus when it requires a force to move the stick to obtain larger aileron deflections and minus when the ailerons are overbalanced. #### TAIL-SURFACE ARRANGEMENTS The results of the tests on the tail surfaces are given in the form of the following nondimensional coefficients: $$C_N = \frac{\text{normal force}}{qS_t}$$ $$C_{h_1} = \frac{\text{hinge moment}}{q(c_{E_{\bullet \bullet}}^{2} \text{ or } c_{E_{\bullet}}^{2})(b_{E} \text{ or } b_{E})}$$ where S_t , total area of tail surface. $c_{B_{as}}$ or $c_{B_{as}}$, average chord of elevator or rudder. $b_{\mathcal{E}}$ or $b_{\mathcal{E}}$, maximum span of elevator or rudder. The value of C_N was computed from the lift and drag coefficients as measured and C_{k_1} was computed from the pitching-moment scale readings. The data as tabulated are for negative fixed tail settings with various plus and minus elevator or rudder settings and the corresponding minus and plus tab settings. The complete data for the various chord tabs on the elevator are given in table VIII and for the 20 percent c_R tab on the rudder both with and without the reflection plane in table IX. #### PRECISION The coefficients C_L , C_D , and C_N are correct to within ± 3 percent and coefficients C_1' and C_n' are, in general, correct to within ± 3 percent except at 20° angle of attack. The value of C_{h_1} is correct to within ± 3 percent for the ailerons, ± 5 percent for the elevator, and ± 2 percent for the rudder. ### DISCUSSION # METHOD OF COMPARING TABS In a comparison of the results of tests on tabs it is not sufficient to compare merely the reductions in hinge moments because tabs not only reduce the hinge moment but at the same time reduce the effectiveness of the control surface. A criterion for the comparison of different arrangements of tabs and control surfaces should therefore take into account hinge moment, control deflection, the moment produced by the control surface, and the air speed. For the comparisons made herein, the simple criterions C_{i} or C_{N} were chosen for control effectiveness and $C_{h_i}\delta$ for control force. These criterions do not take into account changes in air speed but are valid for making comparisons at any given angle of attack. Other things being equal, however, the higher the air speed the higher the control force, and vice versa. The control-force criterion also assumes that the stick or rudder bar moves equal amounts for equal values of $C_{l'}$ or C_{N} , respectively, the linkage between the stick and control surface being changed accordingly. Therefore, even though C_{h_1} may be reduced considerably, if it is necessary to move the control surface through a very large angle, the product $C_h\delta$ may be FIGURE 10.—Effect of tab deflection on rolling-moment coefficient. Short wide alleron. 10 percent c, full-span attached tab. $\alpha=0^{\circ}$. larger with the tab than without it for the same $C_{l'}$ or C_{N} . In order to obtain the curves of control-force criterion $C_{h_1}\delta$ against $C_{i'}$ or C_N as used for comparisons in this discussion the procedure is as follows: First, plot either $C_{i'}$ or C_N and C_{h_1} against δ for the various tab settings. This procedure is illustrated in figures 10 and 11 for the 10 percent c_A full-span attached tab on the short wide aileron. From these curves pick off the values of $C_{i'}$ and C_{h_1} for the desired aileron deflections and ratios of δ_{T}/δ_A , sum up the results for the two ailerons, as explained previously, tabulate and compute: | δτ | 8,1 | C, | Cť | $C_{k_1}\delta_A$ | |---------------------|------------------------------|--------------------------|-----------------------|--------------------------| | Degrees ±10 ±20 ±30 | Degrees
±10
±20
±30 | 0, 092
. 265
. 578 | 0.030
.081
.083 | 0. 92
5. 30
17. 34 | The example given is for an equal up-and-down aileron movement and for $\delta_T/\delta_A=1.0$. The best ratio of δ_T/δ_A for a given size of tab can be obtained by making the computations as outlined for several ratios of δ_T/δ_A and then plotting C_{h_1} δ_A against C_l and picking the best ratio from this plot. In order to find the optimum size of tab for a given ratio of δ_T/δ_A , the same computations should be made for several sizes of tabs. The effectiveness of a tab in trimming the aircraft or for complete servo operation of the controls may be determined from data presented as in figures 10 and 11. In this case first find from figure 11 the up-and-down aileron deflection for zero hinge moment for the various tab settings and then, for the corresponding values of aileron and tab deflection, take the values of FIGURE 11.—Effect of tab deflection on hinge-moment coefficient. Short wide alleron. 10 percent c, full-span attached tab. $\alpha=0^{\circ}$. C_i (fig. 10). For ordinary aileron movements it is assumed that the ailerons are so interconnected as to deflect with the desired differential movement. Figure 11 also shows that for down-aileron deflections the maximum reduction in hinge-moment coefficient would occur with the tab deflected up 20°, and for the up-aileron deflections it is not beneficial to deflect the tab down more than 30°. A further analysis of the data in tables I to IX shows that, in general, the tab cannot be depended upon to give reductions in hinge moments for deflections greater than $\pm 20^\circ$. All the comparisons given as applied to ailerons are for equal up-and-down motion. For the trimming and servo-control tabs it is also assumed that the ailerons are so interconnected as to move equally up and down. Similar curves may be drawn for any desired aileron differential motion #### COMPARISON OF ATTACHED AND INSET TABS The control-force criterion is plotted against rollingmoment coefficient for the plain aileron, no tab, and for the aileron with the same size attached and inset tabs in figure 12. From this figure it is evident that with the same ratio of δ_T/δ_A the attached tab is inferior to the inset tab for the purpose of reducing the control force for the same rolling-moment coefficient. This result is logical because when a tab is attached to the trailing edge of a control surface the chord is increased and, since the hinge moment is approximately proportional to the square of the controlsurface chord and the rolling moment to the first power, the resultant hinge moment would necessarily be greater. The increased moment arm at which the tab is working might be expected to compensate for this increased hinge moment but apparently the compensation is only partial, because the control force with the attached tab is higher than for the plain aileron except over a very small range of aileron deflections. A further study of the data in tables I to IV shows this result to be typical of attached tabs as compared with inset tabs. Since the inset tab is more effective than the attached tab, the remainder of the discussion will be devoted to inset tabs; and, for the aileron portion, only the equal up-and-down movement will be considered for this movement gives representative results. # INSET TABS ON SHORT WIDE AILERONS Effect of various ratios of δ_T/δ_A on control force.— A comparison of the effect of various ratios of tab deflections to alleron deflection on $C_{h_l}\delta_A$ and C_l is shown in figure 13 for the 10 percent c_A full-span inset tab on the short wide aileron. It may be seen that all ratios of δ_T/δ_A give a reduction in control force for a given C_i when C_i is less than 0.06. As the data are for static-force test conditions and as in flight there is an actual reduction in hinge moment due to rotational velocity in roll, if the control force is reduced to zero according to static-force test data, overbalance will occur in flight. A more detailed analysis of the probable reduction of hinge moment due to rotational velocity in roll is given later in the report. There is also a slight difference in the hinge moments as measured in these tests and those encountered in flight owing to the manner in which the tab is locked to the aileron; this subject will also be discussed later. On the basis of the probable reduction in hinge moment due to rotation for the short wide aileron, the ratio of tab/aileron deflection of 0.75 will reduce the hingemoment to about zero at the low aileron deflections on an airplane in flight. For this deflection ratio, the reduction in control force at $C_{l}'=0.04$ is 74 percent that of the aileron without tabs. In some cases $C_i'=0.04$ gives satisfactory rolling con- FIGURE 12.—Comparison of effect of attached and inset tabs on the control-force criterion. Short wide allerons with equal up-and-down deflection $\delta_T/\delta_A=1$. $\alpha=0^\circ$. Figure 14.—Effect of tab size on the control-force criterion. Short wide allerons with equal up-and-down deflection. Full-span inset tabs. $\delta_{r}/\delta_{4}=0.75$. $\alpha=0^{\circ}$. FIGURE 13.—Reflect of tab-alleron deflection ratios on the control-force criterion. Short wide allerons with equal up-and-down deflection. 10 percent c_A full-span inset tab. $\alpha=0^{\circ}$. FIGURE 15.—Effect on of tab location on the control-force criterion. Short wide allerons with equal up-and-down deflection.
$\delta_{\pi}/\delta_{A}=1.0$. $\alpha=0^{\circ}$. trol. (See reference 12.) If a value of $C_i'=0.075$ is necessary for satisfactory control, none of the tabs are beneficial for the extreme control-surface movements. For the high-speed condition of flight the tab is quite satisfactory, however, as a means of balance. For the ratio of $\delta_T/\delta_A=1.0$ overbalance would probably occur in flight owing to the reduction of hinge moment caused by the rolling velocity; for the ratio 1.5 overbalance occurs in the wind-tunnel tests. Effect of variation of tab size on control force.—A comparison of the effect on the control force of the variation in tab chord, for a given ratio of tab to aileron deflection $(\delta_T/\delta_A=0.75)$, is shown by figure 14. This figure shows that none of the tabs gave reduction in FIGURE 16.—Effect of angle of attack on the control-force criterion. Short wide allerons with equal up-and-down deflection. 20 percent c_A half-span inboard inset tab. control force for values of C_i greater than 0.06. The 5 percent c_A tab requires a larger, and the 20 percent c_A tab a smaller, ratio of tab/aileron deflection to give satisfactory balance. The 5 percent c_A tab would probably be unsatisfactory as a balancing tab because of the decrease in the effectiveness of tabs in reducing the hinge moment when deflected through large angles. Effect of tab location along aileron span on control force.—A comparison of the effect on the control force of locating a tab of the same size at different locations along the aileron span is shown in figure 15. As previously pointed out, the 10 percent c_A full-span tab at a ratio of tab/aileron deflection of 1 $(\delta_T/\delta_A=1.0)$ would probably give overbalance. The 20 percent c_A halfspan tabs, however, will probably not give overbal- ance. The outboard tab is slightly better than the center or inboard tab but, since in a majority of cases it is not practicable to use an outboard tab owing to the wing-tip shape, the inboard tab being next best would probably be used. The differences between the three locations of the 20 percent c_A half-span tabs are so slight that from the consideration of control-force and rolling-moment coefficient there is not much choice. From structural considerations, however, the inboard location is probably preferable. Effect of angle of attack on control force.—The effect of angle of attack on the effectiveness of tabs in decreasing control force is shown in figure 16. It should be remembered that the curves for the different angles of attack should not be directly compared because of the difference in lift coefficients but that each pair of curves for the same angle of attack are comparable. From an inspection of these curves it will be noted that in all cases except at 20° angle of attack the tab gives FIGURE 17.—Variation of control-force coefficient with lift coefficient for a given value of rolling-moment criterion. Short wide afterons with equal up-and-down deflection; 20 percent c, half-span inboard tab. a reduction of control force, the greatest reduction occurring at 0° angle of attack. If no overbalance therefore occurs at 0° angle of attack, no overbalance will occur at other angles of attack. In order to illustrate more accurately the effect of speed on control force with and without tabs, for a given rolling moment, the data from figure 16 have been plotted in figure 17 as a control-force coefficient CF against lift coefficient for two values of the rolling-moment criterion RC'. The control-force coefficient is based on a stick movement of $\pm 25^{\circ}$ to give the maximum aileron deflection for a specified value of RC' at maximum lift and is independent of air speed. The coefficient is defined as $$CF = \frac{Fl}{qc_A S_A C_L} = \frac{C_{h_1}}{C_L} \frac{\delta_{A_{max}}}{25}$$ where F is the force applied at the end of a control lever of length l and $\frac{\delta_{A_{\max}}}{25}$ is the gear ratio between alleron and control lever. The rolling-moment criterion is $$RC' = C_l'/C_L$$ which is proportional to the rolling moment in footpounds and is also independent of air speed. Inspection of these curves shows that the control force is reduced by the use of tabs nearly the same absolute amount for any given RC', regardless of lift coefficient, and that the greatest percentage reduction occurs at the low values of RC' and at low lift coefficients. Effect of variation of tab chord on trimming or servo control.—In figure 18(a) are plotted the rolling moments for various tab deflections of tabs of different chords to give complete balance of the aileron. For purposes of trimming the aircraft, it is possible to compensate for a calculated effect of 3° twist of the wing by deflecting the 5 percent c_A tabs $\pm 7^\circ$. For smaller amounts of twist, the deflection required for trimming is directly proportional to the twist. None of the tabs will give satisfactory control for servo operation unless the value $C_i'=0.04$ is satisfactory for rolling control, in which case the 20 percent c_A full-span tab may be used for complete servo operation of the ailerons. If it is desirable to use a tab for servo operation of the control, it probably should be used in conjunction with some other type of balance. The inset-hinge type of auxiliary balance would probably be the best because it is least affected by changes in angle of attack and yaw. As previously pointed out, it may be noted in figure 18 (a) that it is not, in general, beneficial to deflect the tabs from the neutral position more than 20° . Effect of angle of attack on trimming or servo control.—Tabs as a means of trimming the aircraft or for servo operation of the controls become less effective at the higher angles of attack. Figure 18 (b) for the full-span 20 percent c_A tab shows that even if the tab were satisfactory for servo operation of the control at 0° angle of attack, it would not be satisfactory at 10°, 15°, and 20°. Effect of tab location along aileron span on trimming or servo control.—The 20 percent c_A half-span tab at any of the locations along the span was inferior as a trimming or servo-control device to the 10 percent c_A full-span tab for tab deflections less than $\pm 20^{\circ}$. (See fig. 18 (c).) The 20 percent c_A half-span tab at any of the locations gave a slight increase in effectiveness for deflections as great as 40° . The outboard location is slightly superior to the other locations for the larger deflections. # INSET TABS ON ELEVATOR Effect of tab chord and angle of attack of tail surface on C_h and C_N .—It is not practicable to compare the control-force criterion for the tail-surface test results, (a) Effect of tab chord. Full-span inset tabs. $\alpha=0^{\circ}$. (b) Effect of angle of attack. 20 percent c_A full-span inset tab. FIGURE 18.—Variation of rolling-moment coefficients with tab deflection for complete servo operation. Short wide alleron (c) Effect of tab location. $\alpha=0^{\circ}$. FIGURE 19.—Effect of tab chord on hings-moment coefficients for ratio of tab deflection to elevator deflection of 1 (${}^{1}_{7}/\delta_{g}=1$). Elevator 40 percent of area of horizontal tail. Reflection plane in place. except at 0° setting of the fixed tail, because there is no similar control surface moving in the opposite direction and the control surface tends to deflect from neutral as soon as the tail setting is changed from 0°. The effects of tab size and of stabilizer setting on the elevator hinge moment and on the normal-force coefficients are shown in figure 19. At 0° stabilizer setting the 5 percent c_E tab gave an appreciable reduction in hinge moment. With the 10 percent c_E tab the hinge moment became so small that there is a possibility of overbalance in flight owing to pitching velocity. The curves (fig. 19 (a)) show that with the 20 percent c_E tab the control surface was overbalanced for small elevator deflections with the ratio of tab to elevator deflection of 1. The increase in C_N with the 5 and 10 percent FIGURE 20.—Effect of tab chord on the control-force criterion for ratio of tab deflection to elevator deflection of 1 ($\delta_T/\delta_E=1$). Elevator 40 percent of area of horizontal tail. $\alpha_5=0^\circ$. Reflection plane in place. c_E tabs over C_N with no tab $\delta_T = 0^\circ$, at $\delta_E = -30^\circ$ is unusual. For the tests at $\alpha_S = -5^\circ$ (shown in figs. 19 (b) and 19 (c)), using the broken lines as reference axes, the curves for the various sized tabs are about the same as for the curves at $\alpha_S = 0^\circ$ of figure 19 (a). For positive elevator deflections there was more tendency to overbalance at $\alpha_S = -5^\circ$ than for the same elevator deflection at $\alpha_S = 0^\circ$, although this tendency was very slight. Since the change in the reduction of hinge moment with different fixed tail settings was slight, the remainder of the discussion on control force of tail surfaces will be for the 0° fixed tail setting. Effect of tab chord on the control force $(\delta_T/\delta_E=1)$.— The control-force criterion used for the tail-surface test results is the same as the one used for the ailerons. The 5 percent c_E tab gave some reduction in control force for all values of the normal-force coefficient. (See fig. 20.) The 10 percent c_E tab gave reduction in control force only for normal-force coefficients less than 0.44, although it will probably give overbalance for small elevator deflections as pointed out previously. The 20 percent c_E tab gave overbalance in the static-force tests. Effect of various ratios of δ_T/δ_E on control force.— It may be seen (fig. 21) that the 20 percent c_E tab with a deflection ratio of 2/3 gave approximately the same reduction as the 10 percent c_E tab (fig. 20) with a deflection ratio of 1. None of the arrangements gave satisfactory balance for
normal-force coefficients greater than about 0.40. Trimming or servo-control tab.—The results that may be expected by using these tabs for trimming or servo operation of the elevator are shown in figure 22. In this figure the normal-force coefficient and elevator deflection are plotted for the condition of the elevator completely balanced by the tab. These data may be used to determine the tab size and setting necessary to balance the airplane if the angle of attack of the tail is known. It should be noted that no benefit would be obtained by deflecting the tab to angles greater than 20° to the elevator. As the maximum change in C_N that could be obtained with the 0.20 c_E tab as a servo control is small, being equivalent to that obtained with only a 10° deflection of the elevator without tab, probably none of these tabs would be satisfactory as a servo control unless used in conjunction with some other type of auxiliary balance. ### INSET TABS ON RUDDER The rudder, as previously mentioned, was tested with only the 20 percent $c_{\scriptscriptstyle R}$ tab both with and without the reflection plane. The vertical tail of most airplanes is probably most nearly represented by the arrangement without the reflection plane, although some vertical tails would be approximated by the conditions represented with the reflection plane. The effect of the change in fixed tail setting on the results having been discussed for the horizontal tail, the discussion for the vertical tail will be limited to the 0° fin setting (ψ_F =0), except for trimming and servocontrol tabs. Reduction of control force.—With the reflection plane in place, the ratio of $\delta_T/\delta_R=2/3$ gave very satisfactory reduction in control force for small rudder deflections, and some reduction for all values of C_N less than 0.63 (fig. 23 (a)). This tab/rudder deflection ratio probably will not give any overbalance on an airplane due to yawing velocity in flight. For all values of C_N greater than 0.63 it would be better to use the control without the tab. For higher tab/rudder deflection ratios overbalance will occur at the low deflections. Without the reflection plane (fig. 23 (b)) the control force was higher for all values of the normal-force coefficient than with the reflection plane. This increased control force was probably due to the smaller effective aspect ratio of the model, which is accompanied by a lower slope of the lift curve, and also to the large tip loads on the rectangular tip of the rudder. Insofar as balance is concerned, the tab/rudder deflection ratio of 2/3 is probably the largest that can be used without overbalance. The tab in this case was effective in reducing the control force only for values of normal-force coefficient less than 0.60, which is approximately the same as for the model with the reflection plane. Trimming or servo-control tab.—For trimming or servo control the tab was about equally effective either FIGURE 21.—Effect of tab-elevator deflection ratios on the control-force criterion. Elevator 40 percent of area of horizontal tail. Inset tab 20 percent of maximum elevator chord. $\alpha_S = 0^{\circ}$. Reflection plane in place. with or without the reflection plane. (See fig. 24.) The maximum value of C_N was obtained with the tab deflected only 20° and was 0.39 with the reflection plane and 0.38 without it for the fin set at 0°, $(\psi_F=0^\circ)$. This value of C_N corresponds to a rudder displacement of about 10° without tab. The 20° tab deflection is probably greater than necessary for trimming but is not satisfactory for servo operation of the control. For servo operation of the control, the tab would have to be used in conjunction with some other type of auxiliary balance. ### INSET TABS IN COMBINATION WITH OTHER TYPES OF BALANCE A comparison of the actual reduction in hinge moment for a tab on the aileron alone and on the aileron with the auxiliary types of balance is shown in figure 25. The curves are typical for 0° angle of (a) Inset tab 5 percent of maximum elevator chord. (c) Inset tab 20 percent of maximum elevator chord. FIGURE 22.—Variation of normal-force coefficients with elevator deflection for complete serve operation. Elevator 40 percent of area of horizontal tail. Reflection plane in place. attack; for the other angles of attack the change is about the same. It is evident from these results that the reduction in hinge moment due to the tab is approximately independent of the auxiliary balance or, in other words, if the hinge moment is known for a control surface with either a paddle, horn, or Frise balance, the data reported herein may be used to calculate directly the further reduction in hinge moment that may be expected by the addition of a tab. Previous tests (reference 13) have shown that the horn type of balance is ineffective at large angles of attack and tends to overbalance when yawed. The subject tests on the aileron with horn balance did not include the yawed condition but substantiated the conclusion that the horn balance is ineffective at large angles of attack. (See table VII.) The tests with the Frise aileron yawed showed that the reduction of hinge moment due to a tab was the same either yawed or unyawed (fig. 26). In this figure the change in hinge-moment coefficient caused by the deflection of the tab is plotted against tab angle. Since the change in hinge-moment coefficient on this type of aileron caused by a deflection of the tab is unaffected by yaw, it is reasonable to assume that any other type of similarly balanced aileron and tab combination would be unaffected by yaw. If an alleron-tab combination is therefore not overbalanced at zero yaw it will not be overbalanced by the tab when yawed with the controls undeflected. It should be remembered, however, that all ailerons tend to be overbalanced when the wing is sideslipped because of the unsymmetrical wing span load distribution under these conditions. This overbalance was observed in the subject tests on the Frise aileron when yawed and the amount of overbalance was considerable at the high angles of attack. (See table VII.) When a balancing tab is attached to an aileron in a conventional manner so as to start moving at the same time as the aileron and in the opposite direction, the degree of overbalance when yawed will be greater than for the aileron without tab if the ailerons are allowed to deflect a small amount. It would be desirable to design the linkage of a balancing tab so that the aileron and tab would move together over the first 4° or 5° deflection and then differentially to reduce the hinge moment. This arrangement would also be desirable because of the fact that most aerodynamic balancing devices tend to give overbalance at low angles of control-surface deflection. # FACTORS AFFECTING APPLICATION OF STATIC-FORCE TEST RESULTS TO AIRPLANES IN FLIGHT # METHOD OF MEASURING THE HINGE MOMENTS In the wind-tunnel force tests where the tab was part of the control surface, the measured hinge moment was the combined moment of the control surface and the tab. On an actual airplane, however, the arrangement would be more like that shown FIGURE 23.—Effect of tab-rudder deflection ratios on the control-force criterion. Rudder 60 percent of area of vertical tail. Inset tab 20 percent of maximum rudder chord. $\psi_p=0^\circ$. Normal-force coefficient, C_N (b) Reflection plane removed. -1.0 in figure 27. The following discussion applies to any control surface, but an aileron will be treated for simplicity. In the sketch the ratio of 1:1 between FIGURE 24.—Variation of normal-force coefficient with rudder deflection for complete serve operation. Rudder 60 percent of area of vertical tail. Inset tab 20 percent of maximum rudder chord. tab and aileron deflection is assumed. If F_A is the force on the aileron control horn, F_T that on the tab control horn, a summation of the moments about the aileron axis gives, $$F_Aa + xe = yc + F_Tb$$ $$F_{A}a + xe = yc + F_{T}b$$ or, solving for $F_{A}a$ $F_{A}a = yc + F_{T}b - xe$ In the force tests, yc-xe was actually measured. For the case of $\delta_T/\delta_A = 1.0$ under consideration FIGURE 25.-Comparison of reduction of hinge-moment coefficients of inset tabs alone and in combination with other types of balancing surfaces. Short wide aileron. 20 percent c_1 half-span center inset tab. $\alpha=0^\circ$. therefore $$F_A a = yc + xd - xe$$ If for the 10 percent c_A tab it be assumed that the center of pressure on the tab is 20 percent of the tab chord from the leading edge, it follows that $$xd = \frac{2}{92}xe$$ therefore $$F_{A}a=yc+\frac{2}{92}xe-xe=yc-0.98xe$$ From the preceding equation it is apparent that the actual aileron hinge moment would be slightly larger for the flight conditions than it was for the force-test conditions. The actual difference in moment, how- FIGURE 26.—Comparison of reduction of hinge-moment coefficients of inset tabs at 0° and 20° yaw. Frise alleron. 20 percent c, half-span center inset tab. $\alpha=0^{\circ}$. ever, is only 2 percent of the moment of the tab about the aileron axis for the 10 percent c_A tab. #### EFFECT OF ROTATIONAL VELOCITIES When a control surface is deflected on an airplane in flight, an angular velocity is obtained that changes the angle of attack of the control surface in such a manner as to decrease the hinge moment. As in the static-force tests no angular velocity accompanied the control-surface deflection, the hinge moments as measured should be decreased by an amount equal to FIGURE 27.—Diagram of a balancing-tab arrangement for an airplane. the reduction caused by the angle-of-attack change that would be expected in flight. An analytical determination of the reduction that would be expected with the short wide ailerons (40 percent c by 30 percent b/2) is therefore given. From the data of the force tests it was found that for the ailerons, regardless of deflection, and
for angles of attack below the stall, the change in hinge moment with angle of attack was: $$\frac{\Delta C_{h_1}}{\Delta \alpha} = 0.0164 \text{ or } \Delta C_{h_1} = 0.0164 \Delta \alpha$$ This expression is for 2 ailerons, 1 on each wing tip, and $\Delta \alpha$ is in degrees. The value of $\Delta \alpha$ is one-half the difference between the average angle of attack over the portions of the wing containing the two ailerons and may be found in the following manner: $$\Delta \alpha_1 = \tan^{-1} \frac{p'b}{2V}$$ where p' is the rate of rotation in radians about the wind axis. This expression is for the change in angle of attack at the wing tip. For the inboard end of the aileron the expression is $$\Delta \alpha_2 = \tan^{-1} \frac{p'b_1}{2V}$$ where b_1 is the span of the wing between the ailerons. The average change is $$\Delta \alpha = \frac{\Delta \alpha_1 + \Delta \alpha_2}{2} = \frac{\tan^{-1} \frac{p'b}{2V} + \tan^{-1} \frac{p'b_1}{2V}}{2}$$ or $$\Delta \alpha = \tan^{-1} \frac{p'b}{2V} \left(\frac{1 + \frac{b_1}{b}}{2} \right)$$ A value of $\frac{p'b}{2V}$ =0.05 gives for this wing and aileron arrangement $\Delta\alpha$ =tan⁻¹0.0425=2.43°; or the change in hinge moment due to a rate of rotation corresponding to this $\frac{p'b}{2V}$ is ΔC_{h_1} =0.0164×2.43=0.0398, or 0.04 approximately. This result shows that for $\frac{p'b}{2V}$ =0.05 the reduction of the hinge-moment coefficient is about 0.04. From a large number of wind-tunnel tests on wings alone, it has been found that for a rate of rotation corresponding to $\frac{p'b}{2V}$ =0.05 the value of the dampingmoment coefficient C_{λ}' below the stall is approximately 0.02. Recent tests (to be published) have shown, furthermore, that at low angles of attack the aileron deflection necessary to give a rolling velocity corresponding to $\frac{p'b}{2V}$ =0.05 would give a static rollingmoment coefficient of 0.02 ($C_i'=0.02$). For the wing alone it follows that if the ailerons are deflected to give a $C_i'=0.02$ the resultant rolling velocity will correspond to $\frac{p'b}{2V}$ =0.05 and therefore will give a reduction in the hinge-moment coefficient of 0.04. Available test data indicate that the rolling-moment coefficient required to produce a given rolling velocity with a complete airplane is about 25 percent greater than that required for the wing alone. Statements in the discussion relative to the effect of rolling velocity on the hinge moments in flight are based on this difference between results of the wing alone and those for a complete airplane. A similar analysis for the medium-size aileron shows that the reduction in hinge-moment coefficient is 0.008 for a rolling velocity corresponding to $\frac{p'b}{2V}$ =0.05. It is evident therefore that the change in hinge moment due to rolling velocity depends to a large extent upon the size of the aileron. Angular velocities in pitch and yaw affect the moments on the horizontal and vertical tail surfaces in a similar manner but no computations have been made for these effects. ### CONCLUSIONS The conclusions are based on static-force test results and as applied to ailerons are for an equal up-and-down movement. Such factors as angular velocities in roll and methods of operating the tab may have larger effects than those assumed. - 1. Inset tabs were superior to attached tabs for the same tab/aileron deflection ratios. - 2. The reduction in control force with a tab was greater at an angle of attack of 0° than at 10°, 15°, and 20°. - 3. The 20 percent c_A half-span inset tab was probably the best for use as a balancing tab for ailerons. - 4. The 20 percent c_A full-span inset tab was satisfactory as a servo control for values of rolling-moment coefficient as great as those obtained by deflecting the unbalanced control surface about 11°. - 5. For ordinary trimming purposes the 5 percent c_A full-span tab was satisfactory. - 6. The reduction in hinge-moment coefficient due to tabs could be added directly to the reduction due to paddle, horn, or Frise types of balance. - 7. There was no advantage in using tabs for control moments greater than those ordinarily obtained by deflecting the control surfaces more than about 15°. - 8. The reduction of hinge moment due to tabs was independent of angle of yaw for the Frise type aileron. - 9. It appeared that tabs would be more effective when used with large control surfaces that would require small angular displacement. LANGLEY MEMORIAL AERONAUTICAL LABORATORY, NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, LANGLEY FIELD, VA., February 5, 1935. # REFERENCES - Perring, W. G. A.: The Theoretical Relationships for an Aerofoil with a Multiply Hinged Flap System. R. & M. No. 1171, British A. R. C., 1928. - Kirste, Leon: Étude sur les Gouvernails Compensés. Travaux du Cercle d'Études Aérotechniques, No. 7, 1932. Aero Club of France. - Hartshorn, A. S.: The Application of the Servo Principle to Aileron Operation. R. & M. No. 1262, British A. R. C., 1929. - Garner, H. M., and Lockyer, C. E. W.: The Aerodynamics of a Simple Servo-Rudder System. R. & M. 1105, British A. R. C., 1928. - Garner, H. M., and Wright, K. V.: On the Use of a Follow Up Mechanism in Aerodynamic Servo Control Systems. R. & M. No. 1187, British A. R. C., 1929. - Wright, K. V.: Wind Tunnel Tests of Various Servo Rudder Systems. R. & M. No. 1186, British A. R. C., 1929. - Serby, J. E.: Full Scale Experiments with Servo Rudders. R. & M. No. 1514, British A. R. C., 1933. - Reid, Elliott G.: Servo Control Flaps. Aero. Sci. Jour., vol. 1, no. 4, October 1934, pp. 155-167. - Hartshorn, A. S., and Bradfield, F. B.: Wind Tunnel Tests on (1) Frise Aileron with Raised Nose. (2) Hartshorn Ailerons with Twisted Nose. R. & M. No. 1587, British A. R. C., 1934. - Harris, Thomas A.: The 7 by 10 Foot Wind Tunnel of the National Advisory Committee for Aeronautics. T. R. No. 412, N. A. C. A., 1931. - Heald, R. H.: Rolling, Yawing, and Hinge Moments Produced by Rectangular Ailerons. T. N. No. 441, N. A. C. A., 1933. - Soulé, Hartley A., and Wetmore, J. W.: The Effect of Slots and Flaps on Lateral Control of a Low-Wing Monoplane as Determined in Flight. T. N. No. 478, N. A. C. A., 1933. - 13. Irving, H. B., and Batson, A. S.: An Investigation of the Aerodynamic Properties of Wing Ailerons. Part IV. The Effect of Yaw on the Balance of Ailerons of the "Horn" Type. R. & M. No. 728, British A. R. C., 1922. TABLE I.—FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY [R. N.=609,000. Velocity=80 m. p. h. Yaw=0°] | | | · <u> </u> | | · - | Мо | del | | | | | |---------------------|--------------------------------------|-------------------------------|--|-------------------------------|--------------------------------------|-------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-------------------------------| | α | Wing with | h or with-
tabs | 0.1875 c _A
b _A pa | | 0.275 c ₄ b | | Horn a | | Frise a | ulleron
nce | | | CL | C_D | C _L | C_D | CL | C_D | CL | C_D | C_L | C_D . | | 0
10
15
20 | 0. 361
1. 060
1. 260
1. 194 | 0.021
.092
.147
.265 | 0. 395
1. 068
1. 260
1. 128 | 0.023
.098
.157
.276 | 0. 381
1. 054
1. 254
1. 126 | 0.037
.102
.159
.270 | 0. 429
1. 186
1. 360
1. 212 | 0. 033
. 114
. 179
. 275 | 0. 367
1. 040
1. 254
1. 194 | 0.026
.094
.148
.246 | TABLE II FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—FULL-SPAN ATTACHED TAB [R. N.=609,000. Velocity=80 m. p. h. Yaw=0*] | · sr | l | | 40° | | | -30° | ĺ | | -20° | | | -10° | | | 00 | | | 00 | | | 10° | | | 20° | | - | 30° | | | 40° | | |---------------------|-----------------|----------------------------------|-------------------------------|-----------------------------------|------------------------------|-------------------------------|-------------------------------------|--------------------------------|------------------------------|-----------------------------------|------------------------------|-----------------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------|--------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-------------------------------|-----------------------------------|-----------------------------------|-------------------------------|-----------------------------------|-----------------------------------|-------------------------------| | ' | C_{k} | . . | Cr | C,' | $\sigma_{\mathbf{k_1}}$ | Ct' | C _n ' | <i>O</i> _{k1} | Ci' | C _n ' | <i>O</i> _{k1} | Cť | C.' | $\sigma_{\mathbf{k}_1}$ | Cť | C,' | C, | Cť | C _n ' | <i>O</i> _{k1} | Ct' | C _n ' | C,, | Cť | C _n ' | $\sigma_{\mathbf{k_1}}$ | Cť | C _n ' | 0,, | Cť | C _n ' | | <u></u> | | <u> </u> | | <u> </u> | | | | | | 1 | ! | ! | | !_ | | (a) 0 | 05c A | | | · · · · · | •. | , | | , | , | | | | <u> </u> | • | | | α | | | | | | | | | 8 _A =0° | | | | | | | - | | | - , - , | | | | 8 | o° | | | | | | | | | 0
10
15
20 | 0.0 | 032
083
102
278 | 0.003
.003
.002
- | 0
0
001
001 | 0.019
088
180
290 | 0.002
.003
.002
.003 | 0
0
001
001 | 0.009
,104
,182
-,304 | 0.001
.002
.001
001 | —, 001 J | -0.001
097
173
284 | 0.002
.003
.003
.003 | 0
001
001
001 | -0.047
177
239
338 | 0
0
0
0 | 0
0
0
0 | -0.047
177
239
338 | 0
0
0
0 | 0 0 0 | -0.109
229
298
397 |
-0.004
003
003
002 | 0
. 001
. 001 | -0. 160
292
346
446 | -0.008
008
007
004 | 0.001
.002
.002
.002 | -0. 201
339
387
487 | 010 | 0.001
.002
.003
.002 | -0. 226
366
411
516 | 0. 011
011
010
005 | 0.001
.003
.003
.003 | | | | | | | | | • | | A = 15° | | | ,, | | | | | | | | | | | 8, | =-15° | , | | | | | | | | 10
10
20 | - d : : : | 246 —
407 —
444 —
468 — | 0. 023
020
017
001 | 0.005
.010
.012
.009 | -0. 246
378
415
441 | -0.022
016
016
002 | 0.005
.000
.011
.008 | 382
420 | -0.024
021
018
003 | 0.005
.009
.011
.008 | -0. 238
382
413
439 | -0. 022
020
017
002 | 0.005
.009
.011
.008 | -0.301
436
472
494 | -0.024
022
020
003 | 0.006
.011
.012
.009 | 0.101
.042
.004
034 | 0. 032
. 035
. 032
. 025 | 0.001
005
007
009 | 0. 037
024
070
103 | 0. 029
. 032
. 029
. 023 | 0
005
008
011 | -0.005
081
125
161 | 0. 027
. 029
. 020
. 021 | 0
005
007
010 | -0.022
111
157
197 | 0. 026
. 028
. 020
. 019 | 0
004
007
010 | -0.020
125
176
226 | 0. 026
. 027
. 024
. 018 | 0
004
006
010 | | | | | 1_ | | | | | | 3 ₄ =30° | | | | <u>'</u> ' | | | · | | | | | | | 8, | . = -30' | •
 | | | | | | | | 10
10
20 | 5I —. | 418
514
551
516 | 0. 039
032
025
002 | 0. 013
. 019
. 022
. 014 | -0. 407
508
538
510 | -0.037
030
023
.003 | 0, 013
. 019
. 021
. 014 | 0. 378
402
529
508 | -0.037
030
024
.002 | 0.013
.019
.021
.014 | -0.393
522
558
510 | -0.030
030
024
.003 | 0.012
.019
.021
.014 | -0. 454
576
599
550 | -0. 030
035
020
001 | 0. 014
. 022
. 023
. 015 | 0.394
.216
.187
.175 | 0.057
.065
.062
.041 | 0.009
002
007
014 | 0.320
.165
.117
.106 | 0.053
.063
.060
.040 | 0. 008
002
009
015 | 0. 264
. 120
. 059
. 051 | 0. 050
. 059
. 058
. 035 | 0.007
003
008
015 | 0. 218
. 104
. 047
. 024 | 0. 047
. 058
. 056
. 035 | 0.007
003
008
014 | 0. 268
. 126
. 047
. 031 | 0. 050
. 060
. 057
. 049 | 0.007
002
008
014 | | | | | | ' | | | | | | | | | | <u>-</u> | | (b) 0 | .10c₄ | | | | | | | _ | | | | | | | | | | | | | | | | | | δ₄=0° | | | | | | | | | | | | · | | | 8 ₄ =0° | | | | <u>.</u> | | | | | 1 1 2 | ۵ -: -:
د ا | 121
003
104
223 | 0.009
.009
.007
.006 | 0
, 001
, 001
, 001 | 0.089
034
128
229 | 0, 006
. 005
. 005 | 0
001
001
001 | 0. 083
034
122
219 | .0.007
.007
.000 | 0
001
001
002 | 0. 048
050
134
242 | 0. 004
. 005
. 005
. 004 | 0
001
002
002 | -0. 029
135
206
318 | 0
0
0
0 | 0 0 0 | -0. 029
135
206
318 | 0
0
0
0 | 0
0
0
0 | -0. 141
249
809
414 | -0.006
005
005
002 | 0
.001
.001
.001 | -0. 225
338
384
494 | -0.011
010
008
003 | 0.001
.002
.003 | -0. 279
411
451
551 | -0.014
014
012
004 | 0.002
.004
.004
.004 | -0. 358
493
537
627 | -0.017
016
016
005 | .004 | | | | · · · | | | | | | | 8 _A =15° | | | | | | | | | | | | | | 8 | ⊿= −15 | jo | | | | | | | | 1 1 2 | 0 -0.
0
5 | 387
433 | -0. 017
021
019
001 | 0.005
.009
.011
.009 | I 398 | -0. 027
023
019
001 | 0.005
.010
.011 | $1 \rightarrow 282$ | -0. 020
017
011 | 0.008
.008
.009 | -0. 206
346
383
418 | 0. 023
020
017
001 | 0.005
.009
.011
.008 | -0. 274
438
474
489 | -0.028
025
021
002 | 0.006
.011
.012 | 0. 129
. 065
. 026
015 | 0. 033
. 035
. 033
. 027 | 0. 001
005
008
011 | 0.031
047
091
126 | 0. 027
. 029
. 027
. 021 | 0
005
007
010 | -0.042
138
182
230 | 0. 024
. 026
. 024
. 018 | 0
004
007
009 | -0. 077
191
247
295 | 0.02
.02
.02
.01 | 0
004
006
008 | -0.093
229
291
350 | 0. 020
. 021
. 019
. 018 | 0
004
006
008 | | | | | <u>.</u> | | | | | - | 8 ₄ =30° | | | | | | | | | | | | | | ð | ∡ □-30 |)¢ | | | | | | · | | 1 1 2 | 0 —
5 — | 401 -
433
521
487 | -0. 043
025
024
004 | 0. 013
. 019
. 021
. 015 | 483
521 | -0. 040
032
022 | 0.013
2 .018
5 .020
3 .014 | -0 263
397
443
403 | -0.033
025
020 | 0. 011
. 017
. 018
. 018 | —. 552 | -0.038
031
026 | 0.013
.020
.022
.014 | -0.472
612
640
566 | -0.042
038
030
000 | 0.016
.024
0.025
.016 | 0. 444
. 247
. 208
. 194 | 0.064
.069
.064 | 0. 011
002
007
014 | 0.342
158
1.125
1.119 | 0. 055
. 063
. 060
. 053 | 0. 009
003
008
015 | 0, 258
, 116
, 042
, 026 | 0. 099
. 059
. 056
. 047 | 0. 007
003
008
014 | 0.178
.086
006
030 | 0.043
0.053
0.053
0.054 | 0.006
003
008
014 | 0. 183
. 061
029
075 | 0. 048
. 056
. 053
. 035 | 0.007
002
008
013 | | | | | | | | | | | | | | | | | | (c) 0. | 20c₄ | | | | | | | | | | | | | | | |---------------------|----------------------|--|--|----------------------------------|------------------------------------|--------------------------------|----------------------------|----------------------------|-----------------------------------|--|---------------------------------------|-------------------------------|-------------------------------|---------------------------------------|-----------------------------|-------------------------------|--|---------------------------------------|-----------------------------|--|-----------------------------------|-------------------------------|---------------------------------------|--|-------------------------------|------------------------------|-----------------------------|-------------------------------|---------------------------------------|-------------------------------|-----------------------------------| | _α | | | | | | | | | δ _A =0 | ,0 | | - | | | | | | | | | | | | δ ₄ =0° | | | | | | | | | 0
10
15
20 | 0.2
.1
.0
1 | 240 0. ±
225 . ±
225 . ±
28 . ± | 017
018
015
010
010 | 0.001
0.001
0.002
0.003 | 0, 226
. 123
. 012
—. 139 | 0, 014
.018
.018
.007 | 0
002
002
003 | 0, 18
.08
02
16 | 3 0.01
3 .01
1 .01
2 .00 | 0, 001
2 —, 002
1 —, 003
6 —, 003 | 014
121 | 0.008
.003
.007
.002 | 0
002
002
003 | -0, 009
-, 160
-, 263
-, 389 | 0 0 0 | 0 0 0 0 | -0,009
-,160
-,263
-,189 | 0
0
0
0 | 0 0 0 0 | -0. 270
348
440
576 | 006t | 0.001
.002
.003
.003 | -0.376
510
558
675 | -0, 017
-, 017
-, 016
-, 009 | 0,002
.005
.006
.005 | -0.477
616
661
732 | -0.022
021
019
009 | 0.004
.007
.008
.007 | -0.541
699
740
804 | -0.025
025
023
010 | 0.004
.009
.010
.009 | | | | | | | | | | | 8,=1 | 5° | | | | | | | | | | | · | | 8 | 15° | , | · · · · · · · | | | ··· ·· · | | | | 10
15
20 | -0.1
3
4 | 66 —. (
36 —. (| 021 | .009 | -0. 159
348
373
385 | 020
018 | 0.005
0.009
0.009 | -, 29
-, 34 | 7
-0.01
901
301
2 0 | .009 | 452
511 | -0.019
023
020
004 | 0.005
.010
.012
.009 | -0, 355
-, 555
-, 608
-, 580 | -0.031
030
027
005 | 0.006
.012
.015 | 0. 197
. 108
. 000
. 010 | 0.038
.040
.038
.029 | 0.001
005
008
013 | 0.040
067
130
184 | 0.029
.031
.029
.021 | 0
005
007
011 | -0.115
261
331
385 | . 0191 | 0
004
006
009 | I —. 461 i | . 015 | —. 002 i | -0, 202
-, 447
-, 516
-, 566 | 0.010
.014
.013
.006 | -, 003 | | | | | <u>`</u> | | | | | • | δ _A = 3 | 0° | <u> </u> | | | | | | <u> </u> | | | <u> </u> | ı | ' | <u>-</u> | | 0 | | | | | <u></u> | | | 0
10
15
20 | 5 | 03 - 0
20 - 0 |)23 | .021 | -0, 205
, 357
, 389
, 374 | -0.029
029
016 | .017 | 48
53 | 902 | 19 .019
13 .021 | 697
745 | 038
031 | .024
.026 | 0. 569
817
840
718 | 036 | .027 | 0. 569
. 343
. 308
. 285 | . 070 | 0. 012
001
007
015 | . 125 | 0, 061
. 064
. 062
. 040 | 0. 010
002
007
014 | 0, 273
. 075
031
061 | 0.050
.056
.054
{ .044
{ .031} | 0.007
003
008
015 | 088 | | 0.006
003
008
014 | .004 | .051 | 0.007
003
008
013 | | | | _ | 5 _A =0° (d) 0.30c _A 0.024 0.002 0.371 0.018 0.001 0.338 0.016 0 0.210 0.010 0 0.007 0 0 0.024 0.024 0.002 0.205 0.021 0.003 0.204 0.018 0.001 0.386 0.016 0 0.210 0.010 0.002 0.007 0 0 0.007 0.004 | - | δ _A =0° | | | | | | | | | 0
10
15
20 | 0.8
.2
.1 | :01 . d |)24 (
)24 -
)24 -
)17 - | .002 | 0. 371
. 265
. 149
. 015 | .021 | 0.001
003
004
005 | 0.33
.20
.07
—.05 | 4 .01 | 6 0
8 003
6 004
1 003 | 051
072 | .010 | 002 | 0,007
166
278
412 | 0 0 0 | 0 0 0 | 0.007
166
278
412 | 0
0
0 | 0 0 0 | -0. 205
384
469
625 | -0.010
010
009
.004 | 0.001
.002
.003
.003 | -0.431
597
665
796 | -0.0201 | 0.002
.006
.007
.007 | 771
821 | -0.028
027
024
009 | 0.004
.009
.011
.010 | -0. 713
891
930
975 | -0. 034
034
029
010 | 0. 007
. 013
. 015
. 012 | | | | | | | | | | | δ _A =1 | 5° | | | | | | | | | | | | | , | δ _A = -10 | 5° | | <u>.</u> | <u>'</u> | • | <u> </u> | | | 0
10
18
20 | | 161 (| 014 0
015
012
001 | . 0101 | -0.034
262
298
270 | —. O12 | 0.004
.008
.008 | 28
35 | 3 -0.01
201
201
0 .00 | 6 0.003
7 .007
4 .006
1 .006 | -0, 208
-, 444
-, 516
-, 559 | -0.023
024
021 | 0.004
.010
.012
.008 | -0.366
612
668
678 | -0.033
032
028
001 | 0,007
.014
.017
.011 | 0, 248
. 143
. 087
. 031 | 0. 038
. 039
. 039
. 033 | 0.002
005
009
013 | 0.026
090
159
218 | 0, 027
. 030
. 028
. 021 | 0
005
007
011 | -0, 157
-, 325
-, 398
-, 456 | 0.020
.020
.019
.015 | 0
004
006
008 | -0. 290
520
590
643 | . 0111 | 003 | -0. 318
623
700
757 | 0.009
.006
.005
.001 | 0 | | | | | | | | | | , | 8 _A =30 | • | | | | | | | | | | ······································ | | | 8 |
 | • | | | | <u>'</u> | <u>'</u> | | | 0
10
15
20 | -: 4
-: 4 | 100 |)27
)15 | . 019
. 019 | -0. 152
350
385
334 | 02£ | | | 4 -0.03
703
203
5 .00 | | | -0.045
044
035 | .020
.029 | -0.769
972
-1.006
801 | | | 0. 612
. 414
. 371
{ . 352
. 344 | 0.074
.074
.073
.051
.067 | 0.014
0
007
015 | 0.401
.202
.148
.113 | | 0.011
002
008
016 | 0.306
.079
074
111 | .054 | 0.007
003
009
015 | 0. 100
042
218
297 | .049 | 003
009 | 095
274 | . 045
- 048
- 008 | 0.005
002
007
012 | TABLE III FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—0.20cA HALF-SPAN ATTACHED TAB [R. N.=609,000. Velocity=80 m. p. h. Yaw=0] | | | -40° | | | -30° | - | | -20° | | | -10° | | | 0° | | | 0° | | | 10° | | - | 20° | ļ | | 30° | | | 40° | | |----------------------|--------------------------|--|-------------------------------|-----------------------------|-----------------------------|----------------------------|---------------------------------------|-------------------------------|-----------------------------------|------------------------------|-------------------------------|-----------------------------------|------------------------------|-----------------------------|-----------------------------------|-----------------------------------|---|----------------------------|-----------------------------|-----------------------------------|-------------------------------|---------------------------------------|------------------------------------|--------------------------------|------------------------------------|---------------------------------------|----------------------------------|------------------------------|--------------------------------------|-------------------------------| | | C _{k1} | Cı' | C _n ' | C, | Ct' | C _n ' | O_{k_1} | Cł | C,' | C , , | Cť | C _n ' | C, | Cť | C _n ' | C, | Ci' | C,' | C., | Cl | C _n ' | C _{k1} | Cť | C _n ' | C., | Cť | C _n ' | C,, | Ct' | C _n ' | | | | | • | | • | | | | | • | ····· | | • | · | (a) O | utboard | 1 | <u>.</u> | • | <u></u> | | | • | <u> </u> | ····· | | | • | | | | α | | | | | | | | 8 _A =0° | | | | · · · | | | | | | | | | | 8,- |)° | | | | | | | | | 0
10
18
20 | 0.11
.04
01
10 | 0 .000 | 0. 001
0
001
002 | 039
022 | .010 | 0.000
001
002
003 | 0. 074
. 005
064
151 | 0.005
.008
.007
.005 | 0.000
001
002
001 | 0. 024
069
140
230 | .003 | 0, 000
, 001
, 001
, 001 | -0.034
138
208
296 | 0
0
0
0 | 0
0
0 | 0.034
138
208
296 | | 0 0 0 | -0.100
214
282
369 | -0,004
-,003
-,004
-,002 | 0.000
.001
.001
.001 | -0. 199
321
374
455 | -0.007
007
007
007 | 0.001
,003
.003
.003 | -0. 263
389
430
522 | 0.011
011
010
(011
(007 | 0.001
.004
.004
.004 | 487 | -0, 013
-, 013
-, 012
. 007 | 0.002
.005
.006
.006 | | | | | | | | | | 8 _A =15° | 1 | | | | | | | | | | | | | 8, | =-15° | | | | | | | | | 10
10
18
20 | -0. 10
27
37
36 | 9 -0.010
6018
7018
8008 | .009 | 294
358 | -0.018
018
010
004 | .009 | 357
408 | -0.019
019
016
003 | 0.004
.009
.010
.008 | 0. 184
375
431
463 | -0.022
010
016
008 | 0.004
.010
.012
.010 | 531 | -0,024
023
024
007 | 0, 006
. 011
. 013
. 010 | 0.111
.048
.010
027 | 0. 033
. 035
. 032
. 024 | 0.001
005
008
012 | 0.057
014
059
007 | 0.030
.032
.029
.023 | 0.001
005
007
010 | -0.029
112
162
210 | 0.029
.030
.027
.016 | 0
005
007
010 | —, 234 | 0, 022
, 023
, 020
, 014 | 0
004
005
008 | -0.087
216
283
329 | 0. 022
. 023
. 019
. 012 | 0,001
003
004
007 | | | | _' | · <u>'</u> | <u></u> | <u> </u> | <u>'</u> | | δ _A =30° | , | | | | | | | | | | | , | | 8 | -30 ° | • | | | | | | | | 10
10
10
20 | -0.38
46
47 | 7 -0.040
7031
020
000 | 0.013
.019
.020
.020 | 392
430 | | .017
.019 | -0, 316
-, 453
-, 488
-, 470 | 0. 034
031
027
007 | 0. 012
. 018
. 021
. 015 | -0. 398
540
570
531 | -0.041
038
030
007 | 0.014
.021
.023
.017 | -, 634 | 039
032 | . 023
. 025 | 0. 462
. 231
. 199
. 176 | | 0.011
002
000
014 | | | 0.009
002
007
014 | 0, 281
. 141
. 065
. 035 | | 0.008
002
007
015 | 0. 198
. 081
.
019
—. 020 | 0. 047
. 055
. 053
. 031 | | . 081
. 025 | . 055
. 053 | 0.007
002
006
013 | | | | | | 1 | | | | | | <u> </u> | | | | | (b) C | onter | | <u></u> | | | | · | | | | | | <u> </u> | | | | | | $\overline{\delta}_A$ \rightleftharpoons 0° | δ _A = 0° | | | | | | | | | | 10
18
20 | 04
04 | 00:
00: 00: | . 001
8 0
7 0
5 0 | 0. 039
019
100
219 | .011 | 0 · | 0. 078
022
102
223 | 0.007
.008
.008 | 001
001 | 0. 030
074
151
268 | 0.003
.003
.004
.002 | 0 | -0.024
104
164
250 | 0
0
0
0 | 0
0
0
0 | -0. 024
104
164
250 | 0 | 0 0 0 | -0.115
229
310
416 | -0.004
005
004
004 | 0.001
.002
.003
.003 | -0, 190
-, 316
-, 376
-, 483 | -0.007
003
005
001
001 | 0
. 002
} . 003
, 003 | 423 | -0, 011
-, 004
-, 002
-, 005 | .004 | 470 | 013
012 | .003 | | | | | -1 | | | | i | 3 ₄ =15° | | | | | | | | | | | | | | 8 | _A □-15 | j° | | | | | | | | 11 12 | -0.2
4
4
4 | 36 -0.02
0202
5202
00 | 2 .010
0 .019 |)373
403 | 021
015 | .003 | -0. 193
353
393
416 | 0. 017
016
016
001 | 0.003
.009
.011 | 405
455 | -0.023
022
019
004 | 0.006
.010
.013
.010 | -0. 271
456
512
539 | -0.027
028
022
003 | 0.006
.011
.015
.011 | .043 | 0. 034
. 035
. 035
. 025 | 0.001
005
007
010 | 0. 037
030
076
115 | 0.030
.031
.029
.022 | 0.001
004
006
009 | -0.018
099
143
186 | 0.027
.027
.032
.028 | 0
005
006
009 | -0.066
168
212
257 | 0.023
.023
.021
.016 | 0
004
005
007 | -0. 084
198
282
307 | 0. 023
. 022
. 021
. 015 | 0.001
003
004
006 | | | | | | | | | ě | _30° | | | | | | | | | | | | | | ð | _A == −30 |) • | | | | | | | | 1 1 2 | 히 그:4 | 5903
8102 | .02 | 1469 | 5 025
3 017 | | -0.382
504
551
496 | | | 0. 439
593
636
564 | | 0.014
.022
.025 | -0. 531
661
716
615 | | .028 | 0.42
.23
.19
.18 | 7 0.065
2 .065
3 .06
1 {.042
1 {.057, | 0.010
001
008
013 | | | 0.009
002
006
013 | | | 0.008
003
007
016 | | | 0,008
-,001
-,006
-,012 | | .052 | 0 007
002
007
012 | | I | (e) Ir | aboard | |---------------------|---|---| | α | δ _A =0° | δ _A =0° | | 0
10
15
20 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | δ _A =15° | δ ₄ =−15° | | 0
10
15
20 | -0.182 -0.023 | | | | δ _A =30° | δ _A = −30° | | 0
10
15
20 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 5 0.430 0.068 0.011 0.872 0.060 0.009 0.292 0.051 0.008 0.227 0.050 0.007 0.234 0.049 0.007 3 .252 .067 .002 .201 .064 .001 .144 .060 .002 .104 .059 .002 .060 .085 001 5 .221 .065 .007 .134 .061 007 .052 .088 008 004 .067 008 042 041 059 001 042 054 007 8 .206 .042 014 121 031 031 034 014 029 031 014 029 031 014 029 031 014 029 031 014 029 031 042 049 049 049 007 049 007 001 002 001 002 001 002 001 002 001 002 001 002 001 002 001 002 001 002 002 001 002 002 002 002 002 | TABLE IV FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—FULL-SPAN INSET TAB [R. N.=009,000. Velocity=80 m. p. h. Yaw=0°] | δr | -40° | -30° | -20° | -10° | 00 | 00 | 10° | 20° | 30° | 40° | |---------------------|--|--|---|---|---|--|--|--|---|---| | | C _{A1} C _l ' C _n ' | Chi Ci Ca' | Chi Ci' Cn' | C _{A1} C' Ca' | Ch Ci Ca' | C _{k1} Ci' Cn' | C _{A1} C' C _A ' | C . Ci' C' | C _{A1} Ci' C _A ' | C _{A1} C _i ' C _n ' | | | | | | | (a) | 0.050 | | | | | | α | | · · · | 8 _A =0° | | | | | δ ₄ =0° | | | | 0
10
15
20 | 0.019 0.005 -0.001
083 .003001
145 .002001
234 0001 | -0.001 0.004 0
095 .003001
148 .002001
239 .001001 | -0.008 0.002 0
007 .001 0
149 .002001
232 0001 | -0,022 0.002 0001151 .003001001 | -0.070 0 0
143 0 0
185 0 0
266 0 0 | -0.070 0 0
143 0 0
185 0 0
266 0 0 | -0.123 -0.004 0.001
202004 .001
244004 .001
328003 .001 | -0.153 -0.007 0.001
236007 .001
280008 .002
368004 .002 | -0.182 -0.008 0.001
278010 .002
319008 .002
405004 .003 | -0.212 -0.010 0.001
-314011 .003
351010 .003
439005 .003 | | | | - , | 8 _A =15° | | | | 8 _A = −15° | | | | | 0
10
15
20 | -0.194 -0.023 0.008
315020 .008
346016 .010
378004 .008 | -0. 197 -0. 023 0. 005 317 020 009 017 316 004 009 | -0. 178 -0. 022 0. 004
302 020 .008
334 015 .010
302 004 .008 | -0.178 -0.021 0.004
-302019 .008
-334014 .010
-370003 .008 | -0, 233 -0, 026 0, 005 -, 351 -, 021 0, 009 -, 386 -, 018 0, 011 -, 415 -, 004 0, 008 | 0.033 0.032 0
0 .033 006
027 .032 008
052 .025 011 | -0.008 0.028 0005005006 0.028007006 0.028007010 | -0.010 0.028 0 .028005113 .028007007007007007007 | -0.015 0.027 0101 .028004142 .023006176 .017 | -0.031 0.026 0
127 .026004
171 .022000
200 .015009 | | | | | 8 ₄ =30° | | | | | 8 ₄ = −30° | | | | 0
10
15
20 | -0.340 -0.036 0.013
455029 .016
444020 .020
488 .003 .013 | -0, 337 -0, 030 0, 013
-, 415 -, 030 , 018
-, 441 -, 020 , 020
-, 422 , 003 , 014 | -0. 264 -0. 032 0. 011
371 028 .016
401 019 .018
394 .003 .013 | -0.318 -0.035 0.013
413029 .018
445020 .020
425 .003 .013 | -0, 380 -0, 036 0, 013 -, 473 -, 028 0, 019 -, 504 -, 028 -, 001 0, 014 | 0, 266 0, 061 0, 007
157 062 - 003
113 061 - 003
111 636 - 014 | .136 .056 002
 .071 .056 008 | 0, 211 0, 049 0, 007
.134 .058 -, 002
.066 .057 -, 008
.051 .038 -, 014 | 0. 220 0. 050 0. 007
114 0.59 003
0.050 0.55 008
0.035 0.037 014 | 0. 224 0. 051 0. 007
100 . 059003
.042 . 055008
. 018 . 030014 | TABLE IV—Continued FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—FULL-SPAN INSET TAB—Continued [R. N.=609,000. Velooity=80 m. p. h. Yaw=0°] | | | 400 | ī | | | Ī | | | 1 | | | | | | · i | | | 1 | | | | | | <u>-</u> | | | — | | | | |---------------------|-------------------------------|-------------------------------|-----------------------------------|--------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------------------|-------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------|---|-----------------------------------|-------------------------------|-----------------------------------|-----------------------------------|-------------------------------|--------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-------------------------------| | 87 | | -40° | | | -30° | | | -20° | | | -10° | | | 0° | | | 0° | | | 10° | | | 20° | | | 30° | | | 40° | | | | C, | Cť | C _n ' | C, | Cť | Cn' | | Cť | <i>C</i> ₄′ | C _{A1} | Οł | C _n ' | <i>C</i> _{a₁} | Οι' | Cn' | C _{k1} | Cr | <i>C</i> _n ′ | O _{ki} | Cť | C,' | O,, | Oľ | Ca' | C _{k1} | Cť | C _A ' | O,, | Cť | C,' | | | | | | | | | | | | | | | | | (b) | 0.1004 | | | | | | | | | | | | | | | | α | | | | | | | | δ ₄ ⇔0° | | | | | _ | | | | | | | | | | 8_=0° | | | | | - | | | | 0
10
15
20 | 0.086
015
094
177 | 0.011
.008
.004
.009 | 0
001
001
002 | 0.054
045
107
194 | 0.009
.006
.004
.008 | 0, 001
001
001
002 | 0. 039
045
088
184 | 0.007
.007
.008
.009 | 0
002
002
002 | 0.004
072
120
188 | 0.004
.004
.004
.008 | 0
001
001
001 | -0.070
143
185
266 | 0 0 0 | 0 0 0 | -0,070
143
185
266 | 0 0 0 | 0 0 0 0 | -0. 152
230
270
352 | -0.005
007
006
002 | 0.001
.001
.001
.001 | -0.
205
297
330
414 | -0.008
010
010
003 | 0.001
.002
.003
.002 | -0. 241
341
376
456 | -0.010
012
011
.001 | 0, 001
. 003
. 004
. 003 | 379
416 | -0. 014
015
013
001 | 0,002
.004
.005
.004 | | !
 | | | | | | | | 8 _A ⇔15° | • | | | | | | | | | | <u>, </u> | • | | 8, | _ — 15° | • | | | <u>'</u> ' | · | ' | | | 0
10
15
20 | -0. 160
297
326
359 | -0,021
018
016
.004 | 0.005
.009
.010
.008 | -0. 172
284
308
340 | -0.021
018
015
004 | 0.005
.008
.009
.007 | -0.078
176
210
266 | -0.013
009
008
.006 | 0.004
.006
.007
.006 | -0. 153
272
312
349 | -0.018
017
015
.002 | 0.004
.007
.009
.007 | -0. 233
351
386
415 | -0, 026
, 021
, 018
, 004 | 0,005
.009
.011
.008 | 0.033
0
027
052 | 0. 032
. 033
. 032
. 025 | 0
006
008
011 | -0.042
091
124
151 | 0. 028
. 028
. 023
. 019 | 0
005
007
010 | 0.041
126
166
199 | 0, 026
. 025
. 021
. 017 | 0
005
007
010 | -0.060
160
208
244 | 0. 026
. 023
. 020
. 021 | 0
004
006
008 | -0.079
203
247
286 | 0. 023
. 021
. 019
. 019 | 0
004
005
007 | | | | | | | | | | 8 ₄ ==30° | | | | | | | | | | | · · · | , <u>-</u> | <u> </u> | 8 | _A =−30 | ,
,o | | | | | ' | | | 0
10
15
20 | -0.302
364
384
379 | -0.083
025
019 | 0. 012
. 017
. 018
. 013 | -0.280
346
350
360 | -0.031
026
019 | 0.012
.016
.017
.013 | -0. 190
304
340
332 | -0.026
024
017
.007 | 0.009
.015
.016
.012 | -0.300
398
430
407 | -0,031
028
022 | 0, 011
. 017
. 019
. 013 | -0, 386
-, 473
-, 504
-, 466 | -0.036
028
028
001 | 0, 013
. 019
. 021
. 014 | 0. 266
. 157
. 113
. 111 | 0.061
.002
.061
.036 | 0.007
003
008
014 | 0.176
.106
.033
.020 | 0, 048
. 056
. 053
. 037 | 0,006
002
008
015 | 0, 104
. 084
. 013
. 001 | 0. 043
. 054
. 054
. 052 | 0,005
002
008
014 | 0.171
.065
0
—.026 | 0. 040
. 056
. 053
. 051 | 0.006
003
008
014 | 0. 175
. 065
. —. 017
—. 045 | 0, 049
. 055
. 052
. 050 | 0.006
003
007
014 | | | | J | · | : | | | | · | | · · | | | | | (0) 0. | 20c _A | • | | ' | | <u>'</u> | | | | | | <u>'_ ,</u> | <u></u> | | <u> </u> | | | | | | | | | | δ _A =0° | | | | | | | | | | | | | | | δ _A =0° | | | | <u> </u> | | | | | 0
10
18
20 | 0. 187
.092
.022
055 | 0.020
.018
.014
.008 | 0.001
004
003
004 | 0. 144
. 075
0
—. 081 | 0.016
.016
.014
.010 | 0
002
003
004 | 0. 133
. 081
. 026
057 | 0.016
.019
.016
.010 | -0.001
002
004
008 | 0, 036
-, 024
-, 077
-, 153 | 0.008
.009
.007
.003 | 0
002
002
003 | -0.070
143
185
266 | 0
0
0 | 0 0 0 0 | -0.070
143
185
266 | 0 0 0 | 0 0 0 | -0.177
254
282
364 | -0.007
007
006
002 | 0.001
.002
.002
.002 | -0. 266
342
367
450 | -0.014
013
012
006 | 0.002
.005
.005 | -0. 320
414
439
513 | -0. 018
018
017
007 | 0.003
.006
.007 | -0.372
461
490
550 | -0.021
021
026
007 | 0.004
.008
.009
.008 | | | | | | | | | | 8 _A =15° | | | | | | | | | | | _ | | | δ | 4 = −15 | ;° | | | | | | | | 10
10
20 | -0.069
186
246
262 | -0.013
011
011
001 | 0.004
.006
.008
.007 | -0.075
157
075
141 | -0.013
008
007
.003 | 0.004
.005
.004
.003 | -0.033
138
183
244 | -0.007
004
006
001 | 0, 003
. 005
. 005
. 005 | -0, 129
-, 241
-, 291
-, 341 | -0.017
014
013
002 | 0.004
.008
.009
.008 | -0.233
351
386
415 | 0,026
,021
,018
,004 | 0.005
.009
.011
.008 | 0.033
0
027
062 | 0.032
.033
.032
.025 | 0
006
008
011 | -0.072
123
153
183 | 0.025
.026
.024
.018 | 0
004
006
008 | -0.124
216
250
280 | 0.021
.020
.018
.012 | 0
003
005
007 | -0. 133
262
308
343 | 0. 020
. 017
. 013
. 010 | 0.001
002
003
005 | -0. 132
306
344
376 | 0.019
.014
.012
.007 | 0
001
002
004 | | | δ _A =30° | 8 | ⊿ =−30 |)° | | · | · <u>-</u> | | | | | 10
10
20 | -0.228
242
204
114 | -0.028
019
010
.008 | 0, 010
. 013
. 013
. 006 | -0.043
155
200
211 | -0.015
014
010 | .011 | -0. 154
271
315
312 | -0.022
021
017
.003 | 0.008
.013
.015
.011 | -0. 273
380
418
392 | -0.029
026
021
002 | 0.011
.017
.019
.013 | -0.386
473
504
466 | -0.036
028
028
001 | 0.013
.019
.021
.014 | . 113 | 0.061
.062
.061
.036 | 0.007
003
008
014 | 0.148
.084
0
006 | 0.044
.058
.053
.045 | 0.005
003
007
014 | 0.037
.006
082
105 | 0.038
.048
.047
.038 | 0.004
003
008
014 | -0. 033
. 012
034
145 | 0. 033
. 051
. 046
. 036 | 0.003
003
007
013 | 0.093
.029
079
149 | . 052
. 046 | 0.005
003
007
012 | TABLE V FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—0.20c4 HALF-SPAN INSET TAB [R. N=609,000. Velocity=80 m. p. h. Yaw=0°] | 8, | | -40° | | | -30° | | | 20° | | | -10° | | | 0° | | | 0° | : | | 10° | | | 20° | | | 30° | - | | 40° | | |---------------------|---------------------------------------|---|--------------------------------------|---------------------------------------|-------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|-------------------------------|---------------------------------------|---------------------------------------|------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|-------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|-----------------------------------|--|------------------------------------|--------------------------------------|----------------------------| | | C41 | Cť | Cn' | <i>C</i> _{k1} | Cť | C.' | <i>C</i> _{k1} | Ct | C _n ' | C _{k1} | Cť | C _n ' | C, | Ci' | C _n ' | C_{k_1} | Ci' | C _n ' | C_{k_1} | Ct' | C _n ' | C,, | Cť | Ca' | C,, | Ct' | C.' | C, | Cı' | C _n ' | | | | | | | | | | | | | | | | (a |) Outi | oard | | | | - | | | - | | | | <u>· </u> | · | | · | | α | | | | | | | | s_=0° | | | | | | | | | | | | | | - | 8,=0 | 90 | | | ,, | | | | | 0
10
15
20 | 0, 059
. 007
, 025
, 100 | 0, 008
. 009
. 009
. 007 | 0
002
002
003 | 0.035
008
043
131 | 0.007
.008
.009
.007 | 0
-, 001
-, 002
-, 002 | 0, 026
-, 012
-, 056
-, 145 | 0, 006
. 007
. 007
. 006 | 0
001
002
002 | 0.012
.009
.120
.198 | 0.004
.004
.004
.003 | -0, 001
-, 001
-, 001
-, 002 | -0. 070
143
185
266 | 0 0 0 | 0000 | -0.070
143
185
268 | 0000 | 0 | -0, 124
-, 206
-, 240
-, 315 | -0.004
004
003
001 | 0
.001
.001
.006 | -0. 180
260
289
372 | -0.006
007
006
005 | 0.001
.002
.001
.003 | -0, 216
-, 300
-, 335
-, 408 | -0.009
010
008
005 | 0.002
.004
.004
.004 | 350 | -0.010
010
008
002 | 0.000 | | | | | | | | | | 8 _A = 15° | | | | | | | | | , | | | | | ě | 3 _A = −1 | 5° | | • | | | | | | 0
10
15
20 | -0.087
227
292
316 | -0.018
017
- 016
004 | 0.003
.007
.008
.007 | -0. 102
246
286
336 | -0.019
015
012
001 | 0.004
.007
.008
.008 | -0. 105
232
287
334 | -0.018
014
012
0 | 0.003
.007
.008
.008 | -0.143
281
328
376 | -0.021
017
015
004 | 0.005
.008
.009 | -0. 233
351
386
415 | -0.026
021
018
004 | 0, 005
. 009
. 011
. 008 | 0.033
0
027
052 | 0. 032
. 032
. 032
. 025 | 0
006
008
011 | 0.017
061
091
116 | 0. 026
. 028
. 025
. 020 | 0
005
007
010 | -0.047
115
146
174 | 0.026
.026
.024
.018 | 0
005
007
009 | -0, 047
134
174
207 | 0. 026
. 025
. 023
. 017 | 0
003
005
007 | -0.052
150
192
225 | 0. 025
. 024
. 023
. 016 | 0.001
002
004
006 | | | | | | | | | | 8 ₄ ≔30° | | | | | | | | | | | · · · · · · · · · · | | <u> </u> | ě | 3 _A = -30 |)° | | | | | | | | 0
10
15
20 | -0.308
344
378
362 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | -0.386
473
504
466 | -0.036
028
028
001 | 0. 013
. 019
. 021
. 014 | 0. 266
. 157
. 113
. 111 | 0. 061
. 062
. 061
. 036 | 0.007
003
008
014 | 0, 196
. 082
. 060
. 053 | 0. 050
. 057
. 055
. 046 | 0,006
003
008
014 | 0 142
.069
.019
.001 | 0. 048
. 054
. 053
. 043 | 0,005
,003
,008
,014 | 0. 146
. 096
. 036
. 008 | 0. 050
. 058
. 055
. 046 | 0.006
003
008
014
 0.128
.090
.051
004 | 0. 047
. 056
. 055
. 046 | 0, 006
-, 003
-, 007
-, 013 | | | | | | 021 | | | | | | | | | | • | (| b) Ce | nter | | <u> </u> | · | ' | ·· | | | | <u>.</u> | | | | | | | | | | | | | | | 8 ₁ = 0° | | | | | • | | | | | | | | • | | δ _A =0° | | | | | | | | | 0
10
15
20 | 0.068
026
081
160 | 0.008
.006
.004
.002 | 0, 001
-, 001
-, 001
-, 002 | 0, 051
044
098
178 | 0.007
.005
.002
.002 | 0
001
002 | 0.022
045
091
164 | 0.007
.006
.004
.003 | 0
001
002
002 | -0.006
081
122
199 | 0.004
.002
0 | I —. 001 | -0.070
143
185
268 | 0
0
0 | 0
0
0
0 | -0.070
143
185
266 | 0
0
0
0 | 0 0 0 0 | -0. 125
197
234
314 | 0, 007
, 007
, 007
, 003 | 0
.001
.001
.001 | -0, 164
-, 242
-, 282
-, 362 | -0.008
009
010
003 | 0.001
.002
.002
.002 | -0. 196
273
318
382 | -0.011
012
013
004 | 0, 002
.003
.003
.003 | -0. 214
305
346
376 | -0. 013
014
015
005 | 0, 002
. 004
. 005 | | | | | | | | | | 8 ₄ =15° | | | | | | - | | | | | | | | 8 | s ₄ =−18 | ;o | · | | | | | | | 0
10
15
20 | -0, 140
-, 291
-, 337
-, 353 | -0, 023
-, 020
-, 020
-, 005 | 0.005
.009
.010
.009 | -0, 147
-, 292
-, 304
-, 341 | -0.026
020
017
005 | 0,005
.009
.009 | I —. 290 | -0.018
015
014
003 | 0,004
.008
.009
.008 | -0. 145
296
327
376 | -0, 024
-, 020
-, 019
-, 005 | 0.004
.008
.009
.008 | -0.233
351
386
415 | -0, 026
-, 021
-, 018
-, 004 | 0.005
.009
.011
.008 | 0. 033
0
027
052 | 0. 032
. 032
. 032
. 025 | 0
006
008
011 | -0.022
067
098
120 | 0. 025
. 026
. 023
. 018 | 0
004
006
009 | -0.032
099
150
159 | 0. 025
. 025
. 021
. 017 | 0
004
000
009 | -0.050
130
105
196 | 0.023
.023
.019
.014 | 0.001
003
006
008 | -0. 065
152
189
218 | 0. 021
. 021
. 017
. 013 | 0
003
005
007 | | | | δ _A =30° | | | | | | | | | | | | | | | | | | 8 | | • | | | | | | | | | | 0
10
15
20 | -0. 803
332
360
315 | -0.036
027
021
.002 | 0.013
.017
.018
.014 | -0, 235
-, 308
-, 344
-, 341 | -0.030
025
019 | 0. 011
. 016
. 017
. 013 | -0. 279
357
395
384 | -0, 033
029
023
. 003 | 0, 011
. 016
. 018
. 013 | -0.330
412
445
418 | 0.038
031
026 | 0.013
.018
.020
.014 | -0. 386
473
504
466 | -0.036
028
028
001 | 0. 013
. 019
. 021
. 014 | 0. 266
. 157
. 113
. 111 | 0. 061
. 062
. 061
. 036 | 0.007
003
008
014 | 0. 206
. 100
. 049
. 043 | 0. 040
. 055
. 051
. 045 | 0.006
002
008
018 | 0, 170
, 105
, 031
, 0J1 | 0. 044
. 053
. 050
. 043 | 0.006
002
007
013 | 0. 210
. 109
. 027
. 001 | 0, 049
. 055
. 050
. 042 | 0.007
.002
008
013 | 0, 224
. 088
. 000
-, 022 | 0. 050
. 052
. 047
. 041 | 0.006
002
007
013 | TABLE V—Continued FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—0.20c4 HALF-SPAN INSET TAB—Continued [R. N=609,000. Velocity=80 m. p. h. Yaw=0°] | 8, | -4(|)¢ | | -30° | | | -20° | | | -10° | | | 0° | | | 0° | | | 10° | | | 20° | | | 30° | | | 40° | | |---------------------|--------------------------------------|---|------------------------------|-------------------------------|-----------------------------------|------------------------------|--------------------------------|-----------------------------------|-----------------------------|-------------------------------|-----------------------------------|---------------------------------------|-----------------------------|-----------------------------------|-----------------------------|-------------------------------|----------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------------|-----------------------------------|-------------------------------|---------------------------------------|-----------------------------------|---------------------------------|-------------------------------|-----------------------------------|-------------------------------| | | C, C | ' C.' | C | Cť | C _n ' | $\sigma_{\mathbf{k_i}}$ | Oť | C,' | C, | Ci' | C _n ' | C | Cť | C _n ' | C | Cť | C,' | C | Cl' | C,' | C,, | Cť | Cn' | C | Cr | Ca' | | Ct' | C _n ' | | | | | | | | | | | | | | | (| c) In | board | | | | | | | | | | | | | | | | α | | | | | | | 8 ₁ =0° | | | | | | | | | | | | | | | $\delta_A = 0^{\bullet}$ | | | | | | | | | 0
10
15
20 | 0. 054 0.
059 .
130 .
195 . | 011 0
008 001
005 002
004 001 | 0.044
003
130
193 | 0,009
.006
.005
.004 | 0
001
001
002 | 0. 024
080
105
179 | 0.007
.007
.006
.004 | -0.001
001
002
002 | -0.015
090
135
212 | 0.005
.005
.004
.004 | 0
001
001
001 | -0.070
143
185
206 | 0 | 0
0
0
0 | -0.070
143
185
266 | 0000 | 0
0
0 | -0.124
195
228
312 | -0,005
004
003
.001 | 0
.001
.001 | -0, 157
-, 235
-, 270
-, 360 | -0.008
007
000 | 0.001
.002
.002
.002 | -0, 183
-, 204
-, 302
-, 383 | -0,009
009
008
001 | 0.001 -
.003
.003
.003 | -0. 194
282
318
394 | -0.010
011
010
0 | 0,001
.003
.004
.003 | | | 8 _A =15° | | | | | | | | | | | | | | | · | | | | | 8, | 4 15° | | | • | | | | | | 0
10
18
20 | 313 | 019 0.000
016 .000
015 .000
001 .000 | -0, 142
194
228
282 | -0. 020
010
007 | 0, 004
. 000
. 007
. 007 | -0. 125
236
276
321 | -0.018
013
011
001 | 0.004
.007
.008
.007 | -0.152
270
322
359 | -0.020
015
014
001 | 0.004
.008
.009
.008 | -0, 233
-, 351
-, 380
-, 415 | -0,026
021
018
004 | 0.005
.009
.011
.008 | 0. 033
0
027
052 | 0.032
.032
.032
.025 | 0
000
008
011 | -0.015
061
087
111 | 0. 028
. 030
. 028
. 022 | ó
—. 005
—. 007
—. 010 | -0.033
096
120
152 | 0. 027
. 028
. 026
. 018 | 0
004
007
000 | -0. 051
121
154
187 | 0. 025
. 026
. 024
. 017 | 0
004
006
008 | -0.059
141
171
204 | 0.025
.024
.022
.010 | 0
002
004
007 | | | | | | | | 8 | | | | | | | | | | | | | | | 8 | 30° | | | | | | | | | 10
18
20 | -0, 301 -0,
366
392 | 033 0. 01
027 . 01
020 . 01
004 . 01 | -0.238
322
356
340 | -0, 029
-, 024
-, 017 | 0.010
.015
.016
.012 | -0. 284
377
415
387 | -0, 033
028
020
. 004 | 0. 012
. 017
. 018
. 013 | 0. 830
425
457
423 | 0.035
029
023
.004 | 0. 012
. 019
. 021
. 013 | -0, 386
-, 473
-, 504
-, 466 | -0.036
028
028
001 | 0, 013
. 019
. 021
. 014 | 0, 260
.157
.118 | 0.001
.062
.081
.036 | 0.007
003
008
014 | 0. 210
. 075
. 049
. 048 | . 048
. 050
. 057
. 049 | 0.006
004
009
014 | 0.160
.042
.009
007 | 0. 046
. 057
. 054
. 044 | 0.006
004
009
014 | 0, 238
. 048
007
020 | 0. 051
. 057
. 055
. 041 | 0.007
003
008
013 | 0. 252
. 050
018
030 | 0. 053
. 057
. 057
. 040 | 0.007
003
008
013 | TABLE VI FORCE TESTS, CLARK Y WING WITH PLAIN MEDIUM-SIZE AILERON ON RIGHT WING TIP ONLY—0.10c4 FULL-SPAN INSET TAB [R. N.=609,000. Velocity=80 m. p. h. Yaw=0°] | s _r | 40° | 30° | -20° | -10° | .00 | 0° | 10° | 20° | 30° | 40° | |---------------------|--|--|---|--|--|--|---|---|---|---| | | C . C . C . | C _{h1} C' C _n ' | C . C' C' | C . C . | C . C' C'' | C . C . C . | C . C' C' | C _{k1} C' C'' | C . C' C'' | $C_{\mathbf{a}_1}$ $C_{l'}$ $C_{\mathbf{a}'}$ | | α | - | | 8 _A =0° | | | | | 8 _A =0° | | | | 0
10
15
20 | 0.094 0.010 0
039 .003001
082 .001001
150005001 | 0.065 0.008 0
049 .003 0
080 0
150005 0 | 0,049 0,006 0
049 002 0
086 001 0
144003 0 | 0.028 0.005 0
055 0.001 0
077 0.001 0
146002 0 | -0.042 0 0
077 0 0
112 0 0
189 0 0 | -0.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | -0. 126 -0.006 0.001
147 005 .001
182 008 .001
252 008 .002 | -0. 182 -0. 007 0. 001
218 009 . 002
250 010 . 002
346 012 . 003 | -0.238 -0.011 0.002
268013 .003
303012 .004
388013 .004 | 2 -0.262 -0.013 0.003
3309014 .004
4336014 .005
4426014 .005 | | | | | δ _A =15° | | | | | δ _A =-15° | | | | 0
16
15
20 | -0. 137 -0. 020 0. 004
189 020 . 006
202 018 . 008
287 009 . 008 | -0.146 -0.019 0.004
186019 .007
202017 .008
274009 .008 | -0.071 -0.013 0.003 -0.173 -0.017 .007 .007 .007 .007 .007 .007 .007 .007
| 8 -0, 129 -0, 019 0, 004
-, 171 -, 020 0, 007
-, 196 -, 019 0, 008
-, 288 -, 009 0, 008 | -0.177 -0.022 0.002
210021 .003
226019 .000
356008 .000 | 3 .043 .025 —.004
0 .026 .021 —.006 | 0 0.023 0
026 .023003
045 .017005
088007007 | 0.009 0.022 0
060 .021004
090 .015005
137010007 | 0.031 0.024 -0.001
075 .019004
120 .012000
195013000 | 0.029 0.025 0
1104 .017003
5162 .011004
234014005 | | | | | δ _A =30° | | | | | δ ₄ =-30° | | | | 0
10
15
20 | -0. 262 -0. 034 0. 010
299 033 .015
310 032 .017
335 004 .013 | -0. 237 -0. 032 0. 016
287 033 .016
288 032 .016
316 003 .013 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 3 -0.262 -0.034 0.010
3318034 .018
5326034 .017
2358004 .012 | -0.316 -0.037 0.01
376038 .016
387036 .016
404007 .016 | 3 .214 .045003
212 .042 .006 | 0,177 0,041 0,004
3 .166 .042003
3 .162 .038006
2 .129 .017011 | 0.097 0.038 0.003
.033 .038004
.086 .035006
.077 .013011 | 0.177 0.041 0.004
.133 .040003
.128 .036000
.102 .014011 | 3 .195 .044003
3 .193 .040006 | TABLE VII FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY—0.20c4 HALF-SPAN CENTER INSET TAB AND AUXILIARY BALANCE [R. N.=609,000. Velocity=80 m. p. h.] | δ _r | | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | 0° | | <u> </u> | 0° | | | 10° | | | 20° | | [| 30° | • | |---------------------|------------------------------|---|-----------------------------------|------------------------------|--------------------------------|--|------------------------------|--|-----------------------------------|------------------------------|------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------|-----------------------------------|---|-----------------------------|------------------------------------|--|-------------------------------|-------------------------------|--|-----------------------------------| | | C, | C! | C.' | C, | C _l ' | Ca' | | Ci' | C _n ' | C, | Cť | C,' | C,, | Cť | C _n ' | C | Cť | C _n ' | C _{k1} | Ct' | C.' | C,, | Ct' | C _n ' | | | | <u> </u> | <u> </u> | l | ! <u></u> | 1 | <u> </u> | <u> </u> | | | 0.1875c _A t | y 0.445b _A | paddle ba | lance. N | /aw=0° | 1 | <u> </u> | <u> </u> | | <u> </u> | 1 | <u> </u> | <u> </u> | <u> </u> | | α | | | | | | 8,1 | =0° | | | | | | | | | | | δ ₄ = | ·0° | | | | | | | 0
10
15
20 | 0.036
028
070
141 | 0.009
.009
.006
.001 | 0
0
001
001 | 0. 018
038
083
160 | 0.007
.007
.006
.001 | -0.001
001
001
002 | -0.015
073
110
191 | 0.003
.003
.003
—.001 | -0.001
0
001
001 | -0.085
127
164
242 | 0
0
0 | 0
0
0 | -0.068
127
164
242 | 0
0
0
0 | 0
0
0
0 | -0. 131
193
227
303 | -0.005
004
003
.002 | 0
.002
.003
.001 | -0. 169
240
270
343 | -0.007
007
000
004 | 0.001
.003
.003
.002 | -0. 202
274
306
364 | -0.009
009
009
005 | 0. 001
. 004
. 004
. 003 | | | | | | | , | 8, | =15° | | | | | | δ _A =-15° | | | | | | | | | | | | | 0
10
15
20 | -0. 167
204
234
275 | -0.019
012
010
003 | 0.005
.008
.009
.008 | -0. 138
237
280
320 | -0.016
014
012
004 | 0.004
.009
.010
.008 | -0. 185
300
330
362 | -0.019
019
015
004 | 0.005
.010
.010
.008 | -0. 232
341
371
400 | -0. 022
021
018
004 | 0. 005
. 010
. 011
. 009 | 0. 020
021
045
063 | 0.030
.032
.029
.021 | 0
003
006
009 | -0.038
080
105
130 | 0. 027
. 029
. 026
. 018 | 0
003
006
009 | -0.061
122
149
169 | 0. 025
. 020
. 024
. 016 | 0
003
005
008 | -0.073
156
180
204 | 0. 023
. 024
. 021
. 015 | 0
002
004
008 | | | | δ _λ =30° | | | | | | | | | | | δ _A =-30° | | | | | | | | | | | | | 0
10
15
20 | -0. 224
316
330
338 | -0.028
022
017 | 0. 011
. 017
. 018
. 013 | -0. 252
359
380
374 | -0.030
025
018
.004 | 0. 011
. 017
. 018
. 013 | -0.307
417
437
420 | -0.031
027
020 | 0. 012
. 019
. 020
. 014 | -0.350
463
483
456 | -0.035
031
023
.001 | 0. 013
. 020
. 021
. 015 | 0. 241
. 127
. 105
. 093 | 0. 052
. 062
. 059
. 038 | 0.008
0
000
012 | 0. 192
. 085
. 049
. 035 | 0.049
.059
.055
{ .034
.042 | 0.007
001
006
}012 | 0. 146
. 059
. 021
—. 007 | 0. 045
. 050
. 054
{. 031
}. 037 | 0.007
001
006
}012 | 0. 123
. 048
004
032 | 0. 043
. 055
. 050
. 030
. 038 | 0. 006
001
006
011 | | | | | | | 1 | <u> </u> | | <u> </u> | | (b) | 0 275c _A by | 0.445b _A 1 | paddle bala | nce. Y | .w=0° | | | | | <u> </u> | | | | | | | | | | | | 8, | =0° | | | | | | δ _A =-0° | | | | | | | | | | | | | 0
10
15
20 | 0. 050
029
080
090 | 0.008
.004
.003
.004 | 0
001
001
001 | 0. 019
032
072
149 | 0.006
.002
.001
.002 | 0
001
002
002 | -0.014
067
114
186 | 0. 007
. 005
. 005
. 005 | -0.001
0 | -0.082
124
157
224 | 0
0
0
0 | 0
0
0
0 | -0.082
124
157
224 | 0
0
0
0 | 0
0
0
0 | -0. 129
178
222
-, 292 | -0.005
000
008
004 | 0. 001
. 001
0 | -0. 169
234
206
328 | -0.008
012
012
005 | 0.001
.002
.002
.002 | -0. 200
272
309
357 | -0.011
015
015
007 | 0. 002
. 003
. 004
. 003 | | | | | | | | 8, " | ⇒15° | , | <u>·</u> | | | | <u>-</u> - | · | | <u> </u> | | 8, □ | -15° | <u>'</u> | ' | | | | | 0
10
15
20 | -0. 151
205
232
209 | -0.018
015
012
001 | 0.005
.007
.008
.007 | -0. 127
241
274
317 | -0.014
014
010
.002 | 0.005
.008
.010
.008 | -0. 103
292
330
362 | -0.016
017
016
001 | 0.005
.009
.011
.009 | -0. 222
337
371
395 | -0.019
019
010
001 | 0.000
.011
.013
.010 | 0. 010
019
046
068 | 0. 030
. 028
. 025
. 022 | 0. 001
005
007
010 | -0 041
080
105
127 | 0. 028
. 024
. 020
. 019 | 0
004
006
010 | -0.082
136
150
179 | 0. 023
. 019
. 016
. 014 | 0.001
004
006
008 | -0.085
155
181
206 | 0.023
.018
.015
.012 | 0, 001
003
005
008 | | | | 8 _A =30° | | | | | | | | | | <u> </u> | | ············ | <u> </u> | | 8,=- | -30° | | · · · · · · | ! | ' | | | | 0
10
15
20 | -0. 216
320
351
345 | -0.026
026
019
.005 | 0.011
.015
.016
.012 | -0. 247
354
378
376 | -0. 027
025
018
. 006 | 0. 011
. 017
. 017
. 013 | 0. 298
410
440
424 | -0. 031
029
022
. 004 | 0. 013
. 018
. 020
. 013 | -0.332
440
467
446 | -0.032
029
022
.004 | 0, 013
. 020
. 021
. 016 | 0. 244
. 134
. 103
. 094 | 0. 052
. 066
. 053
. 036 | 0.009
001
006
012 | 0. 189
. 082
. 047
. 026 | 0. 048
. 053
. 050
. 034 | 0.008
002
007
012 | 0. 155
. 058
. 007
018 | 0 045
.050
.016
.030
.040 | 0.008
002
006
}012 | 0. 131
. 047
002
036 | 0. 042
. 049
. 048
(. 029
. 037 | 0.007
002
007
011 | # FORCE TESTS, CLARK Y WING WITH PLAIN SHORT WIDE AILERON ON RIGHT WING TIP ONLY-0.20c4 HALF-SPAN CENTER INSET TAB AND AUXILIARY BALANCE—Continued [R. N.=009,000. Velocity=80 m. p. h.] | | | | | | | | | | | 1- | | ,000, 10, | 001 ty =80 | | | | | | | | | | | | |---------------------|------------------------------|--------------------------------------|-----------------------------------|-----------------------------|-------------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|--------------------------------|-----------------------------------|---------------------------------------|-----------------------------|-------------------------------|---|-------------------------------|-----------------------------------|---------------------------------------|---------------------------------|---------------------------------------|-------------------------------|-------------------------------| | δ_{τ} | | 30° | | | -20° | | | -10° | | | 0° | | | 0° | | | 10° | | | 20° | | | 30° | | | | C 41 | O! | C _A ' | C_{k_1} | Cť | C _n ' | C, | Ci' | C _n ' | C,, | Cť | Cn' | C,, | Cł | Cn' | C _{At} | Cť | Ca' | C, | Ct' | C _n ' | σ_{k_i} | Cť | C _R ' | | | | | | | | | | | | | (c) E | Iorn bala | nce. Yaw | -0° | | | | | | | | | | | | α | | | | | | 8 _A =0° | | | | | | | | | | | | 8 _A =0 | • | | | | | | | 0
10
15
20 | 0.073
.016
063
180 | 0.012
.011
.010
.004 | 0
001
001 | 0.056
.028
031
149 | 0.010
.011
.011
.005 | -0.001
002
002
002 | 0.005
017
075
212 | 0.008
.007
.007
.002 | 0.001
001
001
0 | -0.067
087
183
272 | 0
0
0 | . 0
0
0 | -0.067
087
133
272 | 0
0
0 | 0
0
0 | -0. 123
139
170
312 |
-0.002
001
.001
001 | 0.001
.001
.002
.002 | -0. 166
181
204
338 | -0.007
005
005
004 | 0.001
.002
.002
.003 | -0. 190
221
240
370 | -0.009
008
007
006 | 0.001
.005
.003
.004 | | | δ _A =15° | | | | | | | | | | | | | | | | 8,= | -15° | | | | | | | | 0
10
15
20 | -0.140
249
220
269 | -0.027
008
.006 | 0.008
.013
.010
.009 | -0.118
247
273
205 | 0.024
006
.001
.003 | 0.006
.011
.010
.009 | -0. 153
300
324
351 | -0.028
010
002
.004 | 0.007
.013
.012
.010 | -0.198
345
366
396 | -0.033
014
001
.003 | 0, 008
.014
.013
.011 | -0.005
.003
.003
009 | 0.044
.046
.041
.022 | 0.001
007
011
014 | -0.051
052
053
005 | 0.041
.043
.039
.020 | 0
000
010
013 | -0.087
100
101
114 | 0.037
.039
.035
.017 | 0
000
010
012 | -0, 080
-, 123
-, 132
-, 144 | 0.037
.037
.032
.014 | 0
.005
.009
.012 | | | δ _A =30° | | | | | | | | | | | <u></u> | | | | | 8,0 | -80° | | | | - | | | | 0
10
15
20 | -0. 264
314
352
392 | -0.033
008
.002 | 0. 018
. 027
. 020
. 010 | -0.308
360
390
420 | -0.036
011
.001 | 0.017
.022
.020
.019 | -0.357
414
451
488 | -0.038
013
003 | 0.019
.024
.023
.021 | 0.400
400
405
545 | -0.010
016
005
.007 | 0.020
.025
.025
.023 | 0. 194
. 163
. 098
. 110 | 0.075
.080
.084
.048
.050 | 0.011
003
011
}018 | 0.160
.138
.056
.003 | 0.072
.083
.080
{ .050
.051 | 0.011
003
011
}018 | 0. 125
. 112
. 012
. 015 | 0.070
.079
.076
.060
.058 | 0.010
003
011
}018 | 0.099
.130
.008
—.001 | 0.069
.081
.076
.052 | 0.010
002
012
01 | | | [| <u> </u> | | <u> </u> | l | <u> </u> | ! | <u> </u> | I. | | (d) F | rise giloro | n. Yaw= | -0° | | | | <u> </u> | , | <u> </u> | | | | | | | <u> </u> | | | | | 8 | o° | | | | | | | | | | | 8,1 | =0° | | | | | | | 0
10
15
20 | 0. 074
006
049
104 | 0.009
.011
.016
.003 | 0
001
001
008 | 0.042
025
063
106 | 0.009
.007
.007
.003 | 0
001
001
008 | 0.005
047
089
136 | 0.005
.005
.005
.021 | -0.001
001
001
003 | -0.065
125
173
219 | 0 0 | 0
0
0 | -0.005
125
173
210 | 0
0
0 | 0
0
0 | -0.104
161
195
247 | -0.004
001
002
003 | 0
0
.002
005 | -0. 158
210
244
286 | -0.006
006
005
007
002 | 0.001
.002
} .003
}004 | -0. 185
246
275
317 | -0.011
009
005 | 0.001
.003
.003
003 | | | | <u>'</u> | • | ÷ | · | 8,4 | □15° | • | | | | | | | | | | 8, | □-15° | | | | | | | 0
10
15
20 | -0. 078
191
184
214 | -0.021
014
006
{.005
001 | 0.004
.007
.008
} .001 | -0.076
175
211
254 | -0.018
014
011
004 | 0.003
.006
.008
.001 | -0. 111
214
249
312 | -0.023
019
015
.014 | 0.005
.008
.009
.011 | -0. 178
264
294
335 | -0.028
022
018
005 | 0.006
.009
.010
.003 | -0.046
075
088
116 | 0.030
.031
.029
.014 | 0.001
004
006
015 | -0.087
117
141
164 | 0.027
.026
.024
.019 | 0
004
006
014 | -0.141
169
194
212 | 0. 024
. 023
. 023
. 010 | 0
004
006
013 | -0.162
193
221
241 | 0.022
.022
.020
.012 | 0
003
005
013 | | | δ _A =30° | | | | | | | | | | | | | | | | 5 ₄ =-30° | | | | | | | | | 0
10
15
20 | -0. 194
254
285
291 | -0.030
013
015
.008 | 0.011
.015
.017
.007 | -0.245
306
333
335 | -0.033
{017
027
018
002 | 0.012
.017
.018
.007 | -0.303
363
391
378 | -0.036
031
025
004 | 0.010
.018
.020
.009 | -0.350
409
437
415 | -0.038
033
026
005 | 0.014
.019
.021
.010 | 0. 135
. 101
. 097
. 062 | 0.034
.054
.054
.041 | 0.009
0
003
016 | 0.097
.082
.072
.038 | 0.032
.048
.050
.040 | 0.008
001
005
016 | 0.055
.044
.031
002 | 0.030
.043
.049
.039 | 0.007
.001
004
016 | 0.026
.024
.028
.001 | 0.028
.041
.049
.036 | 0.007
.001
003
015 | | | (e)¹ Frise alleron. Yaw=20° | | | | | | | | | | | | | | | | (f)1 F1 | riso aliero | on. Yaw | =20° | | | | | |---------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------------|---------------------------------|------------------------------------|-----------------------------------|-------------------------------|------------------------------------|-----------------------------------|-------------------------------|-----------------------------|-----------------------------------|-------------------------------|------------------------------|-----------------------------------|-------------------------------| | a | | | | | | 8, | ı=0° | | | | | | | | | | | 8 | _1=0° | | | | | | | 0
10
15
20 | 0. 085
. 001
002
001 | 0.007
.003
.008
.003 | 0
002
.004
011 | 0.048
.005
005
048 | 0.005
.004
.004
.002 | 0
001
001
011 | 0. 022
013
028
077 | 0.005
.002
.002
.001 | 0
001
001
011 | -0.042
058
073
128 | 0. 007
. 015
. 030
. 078 | -0.001
006
011
016 | -0.078
173
229
270 | -0.009
016
027
079 | 0.001
.006
.012
.009 | -0.120
223
275
347 | -0.103
005
007
003 | 0.001
.001
.001
.007 | -0.156
281
332
399 | -0.008
007
011
012 | 0.001
.002
.002
.008 | -0.206
309
359
414 | -0.009
009
012
014 | 0.002
.003
.003
.009 | | | 8 ₄ ≈15° | | | | | | | | | | | | δ _A = −15° | | | | | | | | | | | | | 0
10
15
20 | -0.049
117
119
100 | -0.017
014
011
.004 | 0.003
.006
.007
005 | -0.042
133
145
125 | -0.017
016
017
008 | 0.003
.006
.030
.085 | -0.069
165
176
173 | -0.020
020
019
004 | 0.004
.007
.008
.007 | -0.117
200
222
204 | -0.023
023
022
010 | 0.004
.008
.010
003 | -0.037
106
142
176 | 0. 029
. 030
. 027
. 028 | 0.001
005
009
009 | -0.074
150
189
231 | 0. 027
. 026
. 023
. 023 | 0.001
005
008
007 | -0.126
204
249
292 | 0. 023
. 024
. 020
. 018 | 0.001
005
007
005 | -0. 154
238
279
325 | 0. 020
. 020
. 019
. 017 | 0.001
004
007
005 | | | | | | | | δ_A | ⊐30° | | | | | | | | | | | 8 _A - | -30° | | | | | | | 0
10
15
20 | -0. 203
286
274
197 | -0.029
023
024
010 | 0.010
.016
.018
.002 | -0. 238
337
328
237 | {-0.026
031
029
031
012 | . 019 | -0. 290
403
400
282 | -0.032
037
034
016 | 0.012
.021
.023
.006 | -0. 331
438
442
307 | -0.035
037
031
037
015 | 0.010
.019
} .022
.006 | 0. 172
. 109
. 042
—. 046 | 0.044
.061
.061
.001 | 0.010
001
008
010 | 0. 139
. 070
. 005
—. 077 | 0. 043
. 059
. 059
. 058 | 0.009
001
007
009 | 0.102
.025
033
111 | 0. 040
. 087
. 057
. 058 | 0.008
001
008
009 | 0.088
003
063
130 | 0. 041
. 056
. 057
. 053 | 0.008
001
008
009 | In these tables the rolling- and yawing-moment coefficients for $\delta_T = 0^\circ$ and $\delta_A = 0^\circ$ are those due to yaw; for (δ_T) and (δ_A) deflected they are due to tab and/or aliaron. TABLE VIII FORCE TESTS, TAIL SURFACE. ELEVATOR=0.40 TAIL AREA. REFLECTION PLANE IN PLACE [R. N.=1,218,000. Velocity=80 m. p. h. Yaw=0°] | | | | | | | | (a) 0. | 05 cr ins | et tab | | | | | | | | | | |-----------------|------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------------|-----------------------|-----------------------|--|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|------------------------------|--------------------------|--|--| | 8 T | -: | 30° | - | 20° | _ | 10° | C |)° | 0 | • | 1 | 0° | 2 | 0° | 3 | 0° | | | | | C_N | C. | C_N | $C_{\mathbf{A_{I}}}$ | C _N | C | C_N | C1, | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | | | | | | | | | | | α _s | | | | δ _B = | =0° | | | | | | | 8 _B | ⇔0° | | | | | | | °0
-5
-10 | -0.072
320
576 | 0.065
.102
.134 | -0.049
294
518 | 0.062
.087
.118 | -0.035
277
524 | 0.040
.053
.096 | -0.003
240
489 | 0
.019
.040 | 0.003 0 0.035 -0.040 0.049 -0.062 0.072 -0.065 240 .019 214 003 199 028 181 043 489 .040 468 .013 461 .010 446 006 | | | | | | | | | | | } | | | | δ _B - | ·10° | | | | | | | s _E - | -10° | | | | | | | 0
-5
-10 | 0.310
.059
—.196 | -0.047
010
018 | 0.325
.077
176 | -0.060
022
004 | 0.330
.082
164 | -0.069
035
019 | 0.356
.116
130 |
-0. 101
078
060 | -0.356
591
831 | 0. 101
. 116
. 122 | -0.330
582
818 | 0.069
.107
.122 | -0.325
581
819 | 0.060
.107
.131 | -0.310
573
821 | 0.047
.104
.135 | | | | | | | | δ _E = | ·20° | | | | | | | 8,5 | -20° | - | | | | | | 0
-5
-10 | 0.610
.389
.169 | -0.228
197
150 | 0.588
.378
.169 | -0.216
197
144 | 0. 572
. 345
. 157 | -0.200
175
125 | 0.598
.392
.200 | -0.242
206
144 | -0.598
798
991 | 0. 242
. 237
. 253 | -0.572
763
955 | 0. 200
. 206
. 216 | -0.588
757
986 | 0. 216
. 243
. 247 | -0, 610
-, 801
-1, 000 | 0. 228
. 256
. 269 | | | | | | | | δ _B = | 30° | | | | | | | 8,5 | -30° | | | | | | | 0
-5
-10 | 0.700
.468
.249 | -0. 303
284
275 | 0.677
.449
.233 | -0.284
272
256 | 0.662
.423
.211 | -0. 271
244
219 | 0.684
.461
.244 | -0.314
287
256 | -0.634
887
-1.106 | 0.314
.321
.309 | -0.662
859
-1.074 | 0. 271
. 284
. 278 | -0.677
860
-1.085 | 0. 284
. 293
. 300 | -0.700
884
-1.106 | 0.303
.319
.319 | | | | | | | | | (ъ) | 0.10 cz inse | at tab | | | | | | | | | | |----------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------------|--------------------------|--|--|--|--| | å _T | _ | 30° | _ | 20° | _ | 10° | 1 | 0° | 2 | 0° | 3 | 0° | | | | | | _ | C _N | C., | C_N | C,, | C_N | C | C_N | C., | $C_{_{N}}$ | C, | C _N | C | | | | | | αg | | | δ _E | =0° | | | | | 8,5 | =0° | | | | | | | | ° 0
5
10 | -0.136
379
640 | 0. 149
. 171
. 196 | -0.106
346
607 | 0. 118
. 133
. 171 | -0.074
316
573 | 0.077
.090
.121 | 0.074
183
429 | -0.077
037
021 | 0.106
149
416 | -0.118
074
031 | 0.136
119
391 | -0.149
093
046 | | | | | | | | | 8 _B = | -10° | | | δ _B □-10° | | | | | | | | | | | 0
5
10 | 0. 248
003
256 | 0.021
.053
.074 | 0. 262
. 017
-, 231 | 0.003
.034
.043 | 0. 284
. 043
204 | -0.013
.009
.024 | -0. 284
515
746 | 0. 013
. 044
. 075 | -0. 262
534
777 | -0.003
.063
.103 | -0. 248
584
776 | -0.021
.044
.094 | | | | | | | | | δ ₂ = | =20° | | | | | δ _B = | ~-´20° | | - | | | | | | 0
-5
-10 | 0.569
.340
.118 | -0.212
172
125 | 0. 489
. 290
. 090 | -0.147
131
116 | 0. 528
. 320
. 119 | -0. 181
157
119 | -0.528
734
930 | 0. 181
. 197
. 197 | -0. 489
685
875 | 0. 147
. 141
. 138 | -0.569
759
973 | 0, 212
, 225
, 228 | | | | | | | | | 8 _B = | -80° | | | | δ_#= | 30° | | _ | | | | | | | 0
5
10 | 0. 656
. 424
. 197 | -0.243
-,225
-,212 | 0. 595
. 360
. 141 | -0. 181
150
147 | 0.646
.410
.192 | -0.250
235
200 | -0.646
850
-1.062 | 0. 250
. 262
. 262 | -0.595
800
-1.013 | 0. 181
. 194
. 212 | -0.656
860
-1.062 | 0. 243
. 250
. 250 | | | | | # TABLE VIII—Continued # FORCE TESTS, TAIL SURFACE. ELEVATOR=0.40 TAIL AREA. REFLECTION PLANE IN PLACE—Continued [R. N.=1,218,000. Velocity=80 m. p. h. Yaw=0°] | | | | | | | | (o) 0 | .20 cr in | set tab | | | | | | | | | | |----------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|---|--------------------------|-----------------------|--------------------------|-----------------------|--------------------------|---------------------------|--------------------------|--|--| | 8 | -4 | 0° | -3 | 10° | -2 | :0° | -1 | 10° | 1 | 0° | 20 |)° | 3 | 0° | 40° | | | | | | C _N | C _{k1} | C _N | C, | C _N | C, | C _N | C. | $C_{_{N}}$ | C. | $C_{_{ m N}}$ | C, | C _N | C,, | C _N | C,, | | | | α _g | | | | δ,- | - 0° | | | | | | | δ _B = | ·0° | | | | | | | ° 0
5
10 | -0, 263
-, 508
-, 766 | 0. 246
. 258
. 299 | -0. 282
457
725 | 0. 212
. 230
. 261 | -0. 206
472
683 | 0. 199
. 205
. 221 | -0.113
357
588 | 0. 112
. 121
. 180 | 0.113 -0.112 0.206 -0.199 0.282 -0.212 0.263 -0.246 122 087 044 171 030 174 . 013 208 371 059 308 127 303 127 205 159 | | | | | | | | | | | | | | | δ _B = | ·10° | | | | | | | δ _B = | -10° | | | | | | | 0
5
10 | 0. 128
130
884 | 0, 118
. 143
. 171 | 0. 155
094
348 | 0. 102
. 121
. 149 | 0.148
088
333 | 0. 109
. 118
. 130 | 0. 219
. 009
—. 238 | 0.009
.028
.037 | -0. 249
482
724 | -0.009
.022
.054 | -0.148
427
626 | -0.109
040
028 | -0. 155
437
694 | -0.102
009
.032 | -0. 128
409
669 | -0.118
028
.013 | | | | | | | · | δ _R - | ·20° | | | | | | | δ _E = | 20° | | | | | | | 0
5
10 | 0. 535
. 287
. 036 | -0. 188
143
085 | 0. 513
. 279
. 014 | -0. 166
141
085 | 0. 424
. 199
. 005 | -0. 082
069
066 | 0.509
.284
.090 | -0. 178
153
122 | -0. 509
720
914 | 0. 178
. 188
. 191 | -0. 424
625
841 | 0.082
.110
.113 | -0. 513
706
912 | 0. 166
. 184
. 175 | -0. 535
764
971 | 0. 188
. 210
. 219 | | | | | | | | δ _K = | 30° | | | | | | | δ _B = | -30° | | | | | | | 0
-5
-10 | 0. 628
. 416
. 212 | -0. 244
234
219 | 0. 464
. 266
. 074 | -0.088
100
088 | 0. 541
. 302
. 106 | -0. 150
125
135 | 0. 613
. 380
. 187 | -0. 250
219
216 | -0.613
836
-1.042 | 0. 250
. 262
. 256 | -0.541
769
973 | 0. 150
. 181
. 178 | -0.464
710
914 | 0.088
.132
.122 | -0. 628
832
-1. 065 | 0. 244
. 241
. 253 | | | . 502 -5 - 10 # TABLE IX FORCE TESTS, TAIL SURFACE, RUDDER 0.60 TAIL AREA, 0.20c, INSET TAB [R.N.=1,218,000. Velocity=80 m. p. h. Yaw=0°] 10° 20° 30° 40° --30° -20° -10° -40° $\overline{C_{k_1}}$ $C_{\mathbf{l_1}}$ C, C_{b_1} $C_{\underline{k_1}}$ C_{k_1} C_{k_1} C_{k_1} C_N C_N C_N C_N C_N (a) Reflection plane in place ¥, 8_R=0°. 0.003 .025 .057 -0. 245 -. 193 -. 132 -0.003 .031 .061 -0.111 -.081 -.033 0. 299 . 029 —. 248 -0. 239 -. 467 -. 702 0. 210 -0.116 -.348 -.585 0.111 0.011 -0.011 0.116 -0, 239 $\delta_R = -10^{\circ}$ δ₂=10° 0.013 0.439 .044 .197 .068 —.045 -0.304 -.554 -.772 -0.013 .036 .093 -0.114 -.047 .007 -0.123 -.450 -.683 -0.095 -.039 -0.155 -.451 -.720 0.304 .065 —.173 0. 111 . 153 . 192 0.123 0.095 0.101 0.114 -0.09 -0. 101 -0.111 - 022 014 -. 099 -. 345 .132 .170 . 122 . 152 -.061 -.039 -. 426 -. 660 -. 057 -. 301 -. 058 -. 295 -0. 234 -. 161 -. 119 -0.513 -.724 -.926 0.652 .375 .108 0.630 .385 .128 0.782 .579 .345 -0. 118 0.513 - 0.068-0. 160 -0.142 -. 042 . 038 -. 021 . 044 -. 092 -. 035 -.826 -1.019 . 195 .213 .210 8_R=30° $\delta_R = -30^{\circ}$ -0.782 -.905 -1.028 -0.250 -.221 -.225 0.816 .623 .447 -0.728 -.844 -.959 0. 167 . 193 . 220 -0, 615 0.100 .106 .132 0.250 .270 .281 -0. 318 -. 212 -. 200 -. 292 -. 279 -. 070 -. 075 (b) Reflection plane removed $\delta_R = 0^{\circ}$ δ₂=0° 0.004 .018 .057 -0.001 018 051 0.089 --.095 --.301 -0. 101 -. 090 -. 057 -0. 240 -. 182 -. 140 0. 234 . 034 -. 188 0, 240 . 231 . 268 -0.015 0. 191 0.210 -0.213 -0.232 -0. 191 -0.089 0.101 0.015 -0. 210 0. 213 -. 369 -. 636 -. 396 -. 604 $\delta_R = -10^{\circ}$ $\delta_R = 10^{\circ}$ -0. 110 -. 343 -. 572 0. 143 --. 039 --. 219 0.025 0.354 .049 .168 .063 -.018 0.078 .121 .175 -0. 243 -. 454 -. 670 -0. 143 -. 348 -. 563 -0. 120 -. 000 . 003 . 132 . 178 $\delta_R = -20^\circ$ -0.043 .006 .054 -0.122 0.692 -.060 .490 -.019 .292 -0.202 -.148 -.100 -0.692 -.891 -1.055 -0.586 -.796 -.981 0.122 .216 .250 -0.485 --.631 --.802 --0.480 0.053 .134 .191 0.485 .296 .095 -0.054 .003 .054 0. 202 0.479 -. 009 -. 047 .079 -.703 -.891 -.720 -.909 $\delta_{_{\rm I\!P}} = 30^{\circ}$ 0. 197 . 226 . 266 -0.648 -.854 -.997 -0.571 -.756 -.913 -0.071 -.865 -1.022 -0. 198 -. 160 -. 116 -0.123 --.090 --.066 0.648 .508 .302 -0. 197 -. 171 -. 107 -0. 285 -. 240 -. 200 0.838 .664 .496 -0.366 -.309 -.266 0. 285 . 318 . 351 0.198 -0.780